SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Berendse H) "

Sökning: WFRF:(Berendse H)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fluitman, Kristina S., et al. (författare)
  • The Association of Olfactory Function with BMI, Appetite, and Prospective Weight Change in Dutch Community-Dwelling Older Adults
  • 2019
  • Ingår i: Journal of Nutrition Health & Aging. - : Springer Science and Business Media LLC. - 1279-7707 .- 1760-4788. ; 23:8, s. 746-752
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives: The olfactory decline that often accompanies aging is thought to contribute to undernutrition in older adults. It is believed to negatively affect eating pleasure, appetite, food intake and subsequently nutritional status. We have evaluated the associations of olfactory function with BMI, appetite and prospective weight change in a cohort of Dutch community-dwelling older adults. Design Cross-sectional cohort study. Participants Dutch community-dwelling older adults from the ongoing Longitudinal Aging Study Amsterdam (LASA). Measurements and setting In 2012-2013, the 40-item University of Pennsylvania Smell Identification Test (UPSIT) was administered to 824 LASA participants to evaluate their olfactory function. Body weight, height, appetite, comorbidity, cognitive status and socio-demographic factors were also assessed. Follow-up weight was measured after three years. Results 673 participants (aged 55-65 years) were included in the regression analyses. Median UPSIT-score was 33. When adjusted for potential confounders, lower UPSIT-score (indicative of poorer olfactory function) was not associated with poor appetite (OR = 1.062, p = 0.137) or prospective weight change (B = -0.027, p = 0.548). It was, however, associated with lower BMI in smokers (B = 0.178, p = 0.032), but not in non-smokers (B = -0.015, p = 0.732). Conclusion Lower olfactory function scores were associated with lower BMI in community-dwelling older adults who smoke, but not with appetite or prospective weight change. Therefore, smoking older adults with olfactory impairments may pose as a vulnerable group with respect to developing undernutrition.
  •  
2.
  • Berendse, F, et al. (författare)
  • Raised atmospheric CO2 levels and increased N deposition cause shifts in plant species composition and production in Sphagnum bogs
  • 2001
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 7:5, s. 591-598
  • Tidskriftsartikel (refereegranskat)abstract
    • Part of the missing sink in the global CO2 budget has been attributed to the positive effects of CO2 fertilization and N deposition on carbon sequestration in Northern Hemisphere terrestrial ecosystems. The genus Sphagnum is one of the most important groups of plant species sequestrating carbon in temperate and northern bog ecosystems, because of the low decomposability of the dead material it produces. The effects of raised CO2 and increased atmospheric N deposition on growth of Sphagnum and other plants were studied in bogs at four sites across Western Europe. Contrary to expectations, elevated CO2 did not significantly affect Sphagnum biomass growth. Increased N deposition reduced Sphagnum mass growth, because it increased the cover of vascular plants and the tall moss Polytrichum strictum. Such changes in plant species composition may decrease carbon sequestration in Sphagnum-dominated bog ecosystems.
  •  
3.
  • Handa, I. Tanya, et al. (författare)
  • Consequences of biodiversity loss for litter decomposition across biomes
  • 2014
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 509:7499, s. 218-221
  • Tidskriftsartikel (refereegranskat)abstract
    • The decomposition of dead organic matter is a major determinant of carbon and nutrient cycling in ecosystems, and of carbon fluxes between the biosphere and the atmosphere(1-3). Decomposition is driven by a vast diversity of organisms that are structured in complex food webs(2,4). Identifying the mechanisms underlying the effects of biodiversity on decomposition is critical(4-6) given the rapid loss of species worldwide and the effects of this loss on human well-being(7-9). Yet despite comprehensive syntheses of studies on how biodiversity affects litter decomposition(4-6,10), key questions remain, including when, where and how biodiversity has a role and whether general patterns and mechanisms occur across ecosystems and different functional types of organism(4,9-12). Here, in field experiments across five terrestrial and aquatic locations, ranging from the subarctic to the tropics, we show that reducing the functional diversity of decomposer organisms and plant litter types slowed the cycling of litter carbon and nitrogen. Moreover, we found evidence of nitrogen transfer from the litter of nitrogen-fixing plants to that of rapidly decomposing plants, but not between other plant functional types, highlighting that specific interactions in litter mixtures control carbon and nitrogen cycling during decomposition. The emergence of this general mechanism and the coherence of patterns across contrasting terrestrial and aquatic ecosystems suggest that biodiversity loss has consistent consequences for litter decomposition and the cycling of major elements on broad spatial scales.
  •  
4.
  •  
5.
  • Lerche, S, et al. (författare)
  • Methods in Neuroepidemiology Characterization of European Longitudinal Cohort Studies in Parkinson's Disease--Report of the JPND Working Group BioLoC-PD
  • 2015
  • Ingår i: Neuroepidemiology. - : S. Karger AG. - 1423-0208 .- 0251-5350. ; 45:4, s. 282-297
  • Tidskriftsartikel (refereegranskat)abstract
    • <b><i>Background:</i></b> Enormous effort is being put into the identification and characterization of symptoms that may be used as predictive and progression markers in Parkinson's disease (PD). An impressive number of PD patients and individuals at risk for or in the prodromal stage of PD are currently followed in longitudinal studies; however, there does not exist an overview on the kind of markers evaluated and the assessments used. <b><i>Methods:</i></b> Information on the design, sample size, evaluated markers and assessments of 21 studies of the Joint Programme - Neurodegenerative Disease Research BioLoC-PD working group were collected by questionnaire. The studies were classified into at risk/prodromal or clinical PD cohorts. The assessments were grouped into quantitative assessments, investigator-rated assessments, investigator interviews, patient-rated questionnaires and caregiver-rated questionnaires. <b><i>Results:</i></b> Compilation of these data revealed an interesting consensus on evaluated markers, but there was an enormous variability of assessments. Furthermore, there is a remarkable similarity in the markers assessed and evaluation methods applied in the risk/prodromal and clinical PD cohorts. <b><i>Conclusions:</i></b> The inventory of the longitudinal cohorts that are part of the BioLoC-PD consortium reveals that there is a growing consensus on the markers that should be assessed in longitudinal cohort studies in PD. However, controversy still exists on the specific type of assessment. To allow comparison of data and common analyses it will be essential to harmonize scales and assessment outcomes.
  •  
6.
  • Tolboom, N., et al. (författare)
  • The Dopamine Stabilizer (-)-OSU6162 Occupies a Subpopulation of Striatal Dopamine D2/D3 Receptors: An C-11 Raclopride PET Study in Healthy Human Subjects
  • 2015
  • Ingår i: Neuropsychopharmacology. - : Springer Science and Business Media LLC. - 0893-133X .- 1740-634X. ; 40:2, s. 472-479
  • Tidskriftsartikel (refereegranskat)abstract
    • (-)-OSU6162 is a dopamine stabilizer that can counteract both hyperdopaminergic and hypodopaminergic states. In this study, D2/D3 receptor occupancy of (-)-OSU6162 in the human brain was investigated using positron emission tomography (PET). Twelve male healthy volunteers underwent [C-11] raclopride PET scanning before and 1 h after a single oral dose of (-)-OSU6162 (15-90 mg). Blood samples for determination of (-)-OSU6162 and prolactin plasma levels were collected at T-max. Parametric images of [ 11 C] raclopride binding potential relative to nondisplaceable tissue (cerebellar grey matter) uptake (BPND) at baseline and after (-)-OSU6162 administration were generated using the simplified reference tissue model. MRI-based regions of interest were defined for the striatum, composed of caudate nucleus and putamen, and projected onto the co-registered parametric [C-11] raclopride BPND image. Furthermore, three striatal subregions, ie, anterior dorsal caudate, anterior dorsal putamen, and ventral striatum, were defined manually and additionally analyzed. Plasma concentrations of (-)-OSU6162, ranging from 0.01 to 0.9 mu M, showed a linear relationship with prolactin levels, reflecting blockade of pituitary D2 receptors. A concentration-dependent increase in striatal D2/D3 receptor occupancy was observed, reaching a value of about 20% at an (-)-OSU6162 plasma level of 0.2 mu M, and which for higher concentrations leveled off to a maximal occupancy of about 40%. Findings were similar in the striatal subregions. The present data corroborate the notion that (-)-OSU6162 binds preferentially to a subpopulation of D2/D3 receptors, possibly predominantly extrasynaptic, and this may form the basis for the dopamine-stabilizing properties of (-)-OSU6162.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy