SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bergamini A.) "

Sökning: WFRF:(Bergamini A.)

  • Resultat 1-10 av 18
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Glasbey, JC, et al. (författare)
  • 2021
  • swepub:Mat__t
  •  
2.
  •  
3.
  •  
4.
  • Burrascano, S., et al. (författare)
  • Where are we now with European forest multi-taxon biodiversity and where can we head to?
  • 2023
  • Ingår i: Biological Conservation. - 0006-3207. ; 284
  • Tidskriftsartikel (refereegranskat)abstract
    • The European biodiversity and forest strategies rely on forest sustainable management (SFM) to conserve forest biodiversity. However, current sustainability assessments hardly account for direct biodiversity indicators. We focused on forest multi-taxon biodiversity to: i) gather and map the existing information; ii) identify knowledge and research gaps; iii) discuss its research potential. We established a research network to fit data on species, standing trees, lying deadwood and sampling unit description from 34 local datasets across 3591 sampling units. A total of 8724 species were represented, with the share of common and rare species varying across taxonomic classes: some included many species with several rare ones (e.g., Insecta); others (e.g., Bryopsida) were repre-sented by few common species. Tree-related structural attributes were sampled in a subset of sampling units (2889; 2356; 2309 and 1388 respectively for diameter, height, deadwood and microhabitats). Overall, multi-taxon studies are biased towards mature forests and may underrepresent the species related to other develop-mental phases. European forest compositional categories were all represented, but beech forests were over-represented as compared to thermophilous and boreal forests. Most sampling units (94%) were referred to a habitat type of conservation concern. Existing information may support European conservation and SFM stra-tegies in: (i) methodological harmonization and coordinated monitoring; (ii) definition and testing of SFM in-dicators and thresholds; (iii) data-driven assessment of the effects of environmental and management drivers on multi-taxon forest biological and functional diversity, (iv) multi-scale forest monitoring integrating in-situ and remotely sensed information.
  •  
5.
  • Klionsky, Daniel J., et al. (författare)
  • Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes
  • 2008
  • Ingår i: Autophagy. - : Landes Bioscience. - 1554-8627 .- 1554-8635. ; 4:2, s. 151-175
  • Forskningsöversikt (refereegranskat)abstract
    • Research in autophagy continues to accelerate,1 and as a result many new scientists are entering the field. Accordingly, it is important to establish a standard set of criteria for monitoring macroautophagy in different organisms. Recent reviews have described the range of assays that have been used for this purpose.2,3 There are many useful and convenient methods that can be used to monitor macroautophagy in yeast, but relatively few in other model systems, and there is much confusion regarding acceptable methods to measure macroautophagy in higher eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers of autophagosomes versus those that measure flux through the autophagy pathway; thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from fully functional autophagy that includes delivery to, and degradation within, lysosomes (in most higher eukaryotes) or the vacuole (in plants and fungi). Here, we present a set of guidelines for the selection and interpretation of the methods that can be used by investigators who are attempting to examine macroautophagy and related processes, as well as by reviewers who need to provide realistic and reasonable critiques of papers that investigate these processes. This set of guidelines is not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to verify an autophagic response.
  •  
6.
  • Vanzella, E., et al. (författare)
  • An extremely metal-poor star complex in the reionization era : Approaching Population III stars with JWST
  • 2023
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 678
  • Tidskriftsartikel (refereegranskat)abstract
    • We present JWST/Near Infrared Spectrograph (NIRSpec) integral field spectroscopy (IFS) of a lensed Population III candidate stellar complex (dubbed Lensed And Pristine 1, LAP1), with a lensing-corrected stellar mass of ≲104 M⊙ and an absolute luminosity of MUV > −11.2 (mUV > 35.6), confirmed at redshift 6.639 ± 0.004. The system is strongly amplified (μ ≳ 100) by straddling a critical line of the Hubble Frontier Field galaxy cluster MACS J0416. Although the stellar continuum is currently not detected in the Hubble and JWST/Near Infrared Camera (NIRCam) and Near Infrared Imager and Slitless Spectrograph (NIRISS) imaging, arclet-like shapes of Lyman and Balmer lines, Lyα, Hγ, Hβ and Hα are detected with NIRSpec IFS with signal-to-noise ratios (S/N) of approximately 5 − 13 and large equivalent widths (> 300 − 2000 Å), along with a remarkably weak [O III]λλ4959, 5007 at S/N ≃ 4. LAP1 shows a large ionizing photon production efficiency, log(ξion[erg Hz−1]) > 26. From the metallicity indexes R23 = ([O III] + [O II])/Hβ ≲ 0.74 and R3 = ([O III]/Hβ) = 0.55 ± 0.14, we derive an oxygen abundance of 12 + log(O/H)≲6.3. Intriguingly, the Hα emission is also measured in mirrored subcomponents where no [O III] is detected, providing even more stringent upper limits on the metallicity if in situ star formation is ongoing in this region (12 + log(O/H) < 6). The formal stellar mass limit of the subcomponents would correspond to ∼103 M⊙ or MUV fainter than −10. Alternatively, this metal-free, pure line-emitting region could be the first case of a fluorescing H I gas region induced by transverse escaping ionizing radiation from a nearby star complex. The presence of large equivalent-width hydrogen lines and the deficiency of metal lines in such a small region make LAP1 the most metal-poor star-forming region currently known in the reionization era and a promising site that may host isolated, pristine stars.
  •  
7.
  •  
8.
  • De Rosa, C. S., et al. (författare)
  • Differentiation of periapical granuloma from radicular cyst using cone beam computed tomography images texture analysis
  • 2020
  • Ingår i: Heliyon. - : Elsevier BV. - 2405-8440. ; 6:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: This study aimed to investigate the use of texture analysis for characterization of radicular cysts and periapical granulomas and to assess its efficacy to differentiate between both lesions with histological diagnosis. Methods: Cone beam computed tomography (CBCT) images were obtained from 19 patients with 25 periapical lesions (14 radicular cysts and 11 periapical granulomas) confirmed by biopsy. Regions of interest were created in the lesions from which 11 texture parameters were calculated. Spearman's correlation analysis was performed and adjusted with Benjamini-Hochberg false discovery rate procedure (FDR <0.005). Results: The texture parameters used to differentiate the lesions were assessed by using a receiver operating characteristic analysis. Five texture parameters were predictive of lesion differentiation for eight positions: angular second moment; sum of squares; sum of average; contrast; correlation. Conclusion: Texture analysis of CBCT scans distinguishes radicular cysts from periapical granulomas and can be a promising diagnostic tool for periapical lesions. Clinical significance: Texture analysis can be used in diagnostic and treatment monitoring to provide supple-mentary information.
  •  
9.
  • Dengler, Juergen, et al. (författare)
  • GrassPlot - a database of multi-scale plant diversity in Palaearctic grasslands
  • 2018
  • Ingår i: Phytocoenologia. - : Schweizerbart. - 0340-269X. ; 48:3, s. 331-347
  • Tidskriftsartikel (refereegranskat)abstract
    • GrassPlot is a collaborative vegetation-plot database organised by the Eurasian Dry Grassland Group (EDGG) and listed in the Global Index of Vegetation-Plot Databases (GIVD ID EU-00-003). GrassPlot collects plot records (releves) from grasslands and other open habitats of the Palaearctic biogeographic realm. It focuses on precisely delimited plots of eight standard grain sizes (0.0001; 0.001;... 1,000 m(2)) and on nested-plot series with at least four different grain sizes. The usage of GrassPlot is regulated through Bylaws that intend to balance the interests of data contributors and data users. The current version (v. 1.00) contains data for approximately 170,000 plots of different sizes and 2,800 nested-plot series. The key components are richness data and metadata. However, most included datasets also encompass compositional data. About 14,000 plots have near-complete records of terricolous bryophytes and lichens in addition to vascular plants. At present, GrassPlot contains data from 36 countries throughout the Palaearctic, spread across elevational gradients and major grassland types. GrassPlot with its multi-scale and multi-taxon focus complements the larger international vegetationplot databases, such as the European Vegetation Archive (EVA) and the global database " sPlot". Its main aim is to facilitate studies on the scale-and taxon-dependency of biodiversity patterns and drivers along macroecological gradients. GrassPlot is a dynamic database and will expand through new data collection coordinated by the elected Governing Board. We invite researchers with suitable data to join GrassPlot. Researchers with project ideas addressable with GrassPlot data are welcome to submit proposals to the Governing Board.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 18

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy