SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bergenfelz Caroline) "

Sökning: WFRF:(Bergenfelz Caroline)

  • Resultat 1-10 av 30
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Allaoui, Roni, et al. (författare)
  • Cancer-associated fibroblast-secreted CXCL16 attracts monocytes to promote stroma activation in triple-negative breast cancers
  • 2016
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Triple-negative (TN) breast cancers (ER â ' PR â ' HER2 â ') are highly metastatic and associated with poor prognosis. Within this subtype, invasive, stroma-rich tumours with infiltration of inflammatory cells are even more aggressive. The effect of myeloid cells on reactive stroma formation in TN breast cancer is largely unknown. Here, we show that primary human monocytes have a survival advantage, proliferate in vivo and develop into immunosuppressive myeloid cells expressing the myeloid-derived suppressor cell marker S100A9 only in a TN breast cancer environment. This results in activation of cancer-associated fibroblasts and expression of CXCL16, which we show to be a monocyte chemoattractant. We propose that this migratory feedback loop amplifies the formation of a reactive stroma, contributing to the aggressive phenotype of TN breast tumours. These insights could help select more suitable therapies targeting the stromal component of these tumours, and could aid prediction of drug resistance.
  •  
2.
  • Bergenfelz, Caroline, et al. (författare)
  • Clinical relevance of systemic monocytic-MDSCs in patients with metastatic breast cancer
  • 2020
  • Ingår i: Cancer Immunology, Immunotherapy. - : Springer Science and Business Media LLC. - 0340-7004 .- 1432-0851. ; 69:3, s. 435-448
  • Tidskriftsartikel (refereegranskat)abstract
    • The overall aim of this prospective study was to delineate the role of monocytic myeloid-derived suppressor cells (Mo-MDSCs) in patients with metastatic breast cancer (MBC). MDSCs are a heterogeneous group of immunosuppressive cells often enriched in different malignancies which hold prognostic and predictive value for clinical outcomes. Here, we assessed the clinical significance of Mo-MDSCs in 54 patients with de novo or distant recurrent MBC. We show that high levels of Mo-MDSCs significantly correlated with de novo MBC (metastatic disease at initial diagnosis), estrogen receptor (ER) negativity, and liver- and bone metastasis. A trend towards an association between high levels of Mo-MDSCs and survival (P = 0.053) was also found in patients with distant recurrent ER-positive MBC. We therefore propose that an increased population of Mo-MDSCs may be related to the metastatic or immunoregulatory switch associated with transition to a more systemic disease. Our data imply that high levels of systemic Mo-MDSCs represent patients with more aggressive disease and worse outcome.
  •  
3.
  • Bergenfelz, Caroline (författare)
  • Immunosuppressive Myeloid Cells in Breast Cancer and Sepsis
  • 2014
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Immune cells play paradoxical roles in cancer progression. On one hand, the immune system protects us against tumor development by recognizing and eliminating cancerous cells. On the other hand, tumor-associated immune cells can contribute to tumor progression by secreting growth factors as well as immunosuppressive, pro-angiogenic and/or pro-metastatic mediators. In this thesis we identified a factor (Wnt5a) that may be involved in skewing immune responses towards immunosuppressive, tumor promoting immune cell populations. In a pro-inflammatory setting (i.e. in the presence of exogenous pathogen-associated molecular patterns; PAMPs, or endogenous damage-associated molecular patterns; DAMPs), Wnt5a promoted the generation of immunosuppressive monocytes (CD14+HLA-DRlow/-Co-receptorlow/-). This was at the expense of generation of pro-inflammatory macrophages (M1). In addition, Wnt5a inhibited monocyte to dendritic cell differentiation (Mo-mDC). When co-injecting monocytes from healthy blood donors with MCF-7 or MDA-MB-231 breast cancer cells (luminal A and basal-like, respectively) into immunodeficient mice, monocytes promoted the generation of an activated tumor stroma and were preferentially recruited to basal-like tumors. Furthermore, monocytes from breast cancer patients were affected early during the disease, gradually becoming reprogrammed towards a novel population of monocytic myeloid-derived suppressor cells (Mo-MDSCs). The gene-expression profile of cancer-derived monocytes was remarkably similar to that of reprogrammed immunosuppressive monocytes from patients with gram-negative sepsis. This suggests that Mo-MDSCs may be generated in a similar manner in cancer and sepsis (by reprogramming of monocytes towards an immunosuppressive phenotype). We finally propose that Mo-MDSCs and granulocytic MDSCs are preferentially induced by different PAMPs. Altogether, we conclude that myeloid cells are skewed towards an immunosuppressive and tissue remodeling phenotype early during breast cancer. This resembles the situation during severe infections such as sepsis and most likely has a positive impact on tumor progression.
  •  
4.
  • Bergenfelz, Caroline, et al. (författare)
  • S100A9 expressed in ER(-)PgR(-) breast cancers induces inflammatory cytokines and is associated with an impaired overall survival.
  • 2015
  • Ingår i: British Journal of Cancer. - : Springer Science and Business Media LLC. - 1532-1827 .- 0007-0920. ; 113:8, s. 1234-1243
  • Tidskriftsartikel (refereegranskat)abstract
    • Breast cancer is the most common cancer form among women today. Depending on hormone receptor status, breast cancers are divided into different subtypes with vastly varying prognosis. S100A9 is a calcium-binding protein that is associated with inflammation and expressed not only in myeloid cells but also in some tumours. The role for S100A9 in the malignant cells is not well characterised; however, previous studies have shown that the protein could have important immune-modulating properties.
  •  
5.
  • Bergenfelz, Caroline, et al. (författare)
  • Streptococcus pneumoniae Otitis Media Pathogenesis and How It Informs Our Understanding of Vaccine Strategies.
  • 2017
  • Ingår i: Current Otorhinolaryngology Report. - : Springer Science and Business Media LLC. - 2167-583X. ; 5:2, s. 115-124
  • Forskningsöversikt (refereegranskat)abstract
    • Purpose of Review This study aimed to review the literature regarding the mechanisms of transition from asymptomatic colonization to induction of otitis media and how the insight into the pathogenesis of otitis media has the potential to help design future otitis media-directed vaccines. Recent Findings Respiratory viruses have long been shown to predispose individuals to bacterial respiratory infections, such as otitis media. Recent information suggests that Streptococcus pneumoniae, which colonize the nasopharynx asymptomatical- ly, can sense potentially “threatening” changes in the nasopha- ryngeal environment caused by virus infection by upregulating specific sets of genes involved in biofilm release, dissemination from the nasopharynx to other sites, and protection against the host immune system. Furthermore, an understanding of the transcriptional and proteomic changes occurring in bacteria dur- ing transition to infection has led to identification of novel vaccine targets that are disease-specific and will not affect asymptomatic colonization. This approach will avoid major changes in the delicate balance of microorganisms in the respi- ratory tract microbiome due to elimination of S. pneumoniae. Summary Our recent findings are reviewed in the context of the current literature on the epidemiology and pathogenesis of otitis media. We also discuss how other otopathogens, such as Haemophilus influenzae and Moraxella catarrhalis, as well as the normal respiratory microbiome, can modulate the ability of pneumococci to cause infection. Furthermore, the unsatis- factory protection offered by the pneumococcal conjugate vaccines is highlighted and we review potential future strate- gies emerging to confer a more specific protection against otitis media.
  •  
6.
  • Bergenfelz, Caroline, et al. (författare)
  • Systemic Monocytic-MDSCs Are Generated from Monocytes and Correlate with Disease Progression in Breast Cancer Patients.
  • 2015
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 10:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Myeloid-derived suppressor cells (MDSCs) are highly immunosuppressive myeloid cells, which increase in cancer patients. The molecular mechanism behind their generation and function is unclear. Whereas granulocytic-MDSCs correlate with poor overall survival in breast cancer, the presence and relevance of monocytic-MDSCs (Mo-MDSCs) is unknown. Here we report for the first time an enrichment of functional blood Mo-MDSCs in breast cancer patients before they acquire a typical Mo-MDSC surface phenotype. A clear population of Mo-MDSCs with the typical cell surface phenotype (CD14+HLA-DRlow/-CD86low/-CD80low/-CD163low/-) increased significantly first during disease progression and correlated to metastasis to lymph nodes and visceral organs. Furthermore, monocytes, comprising the Mo-MDSC population, from patients with metastatic breast cancer resemble the reprogrammed immunosuppressive monocytes in patients with severe infections, both by their surface and functional phenotype but also at their molecular gene expression profile. Our data suggest that monitoring the Mo-MDSC levels in breast cancer patients may represent a novel and simple biomarker for assessing disease progression.
  •  
7.
  • Bergenfelz, Caroline, et al. (författare)
  • The Generation and Identity of Human Myeloid-Derived Suppressor Cells
  • 2020
  • Ingår i: Frontiers in Oncology. - : Frontiers Media SA. - 2234-943X. ; 10
  • Forskningsöversikt (refereegranskat)abstract
    • Myeloid-derived suppressor cells (MDSCs) are cells of myeloid lineage with a potent immunosuppressive capacity. They are present in cancer patients as well as in patients with severe inflammatory conditions and infections. MDSCs exist as two main subtypes, the granulocytic (G-MDSCs) and the monocytic (Mo-MDSCs) type, as defined by their surface phenotype and functions. While the functions of MDSCs have been investigated in depth, the origin of human MDSCs is less characterized and even controversial. In this review, we recapitulate theories on how MDSCs are generated in mice, and whether this knowledge is translatable into human MDSC biology, as well as on problems of defining MDSCs by their immature cell surface phenotype in relation to the plasticity of myeloid cells. Finally, the challenge of pharmacological targeting of MDSCs in the future is envisioned.
  •  
8.
  • Bergenfelz, Caroline, et al. (författare)
  • Wnt5a induces a tolerogenic phenotype of macrophages in sepsis and breast cancer patients.
  • 2012
  • Ingår i: Journal of immunology. - : The American Association of Immunologists. - 1550-6606 .- 0022-1767. ; 188:11, s. 5448-5458
  • Tidskriftsartikel (refereegranskat)abstract
    • A well-orchestrated inflammatory reaction involves the induction of effector functions and, at a later stage, an active downregulation of this potentially harmful process. In this study we show that under proinflammatory conditions the noncanonical Wnt protein, Wnt5a, induces immunosuppressive macrophages. The suppressive phenotype induced by Wnt5a is associated with induction of IL-10 and inhibition of the classical TLR4-NF-κB signaling. Interestingly, this phenotype closely resembles that observed in reprogrammed monocytes in sepsis patients. The Wnt5a-induced feedback inhibition is active both during in vitro LPS stimulation of macrophages and in patients with sepsis caused by LPS-containing, Gram-negative bacteria. Furthermore, using breast cancer patient tissue microarrays, we find a strong correlation between the expression of Wnt5a in malignant epithelial cells and the frequency of CD163(+) anti-inflammatory tumor-associated macrophages. In conclusion, our data point out Wnt5a as a potential target for an efficient therapeutic modality in severe human diseases as diverse as sepsis and malignancy.
  •  
9.
  • Bergenfelz, Caroline, et al. (författare)
  • Wnt5a inhibits human monocyte derived myeloid dendritic cell generation.
  • 2013
  • Ingår i: Scandinavian Journal of Immunology. - : Wiley. - 1365-3083 .- 0300-9475. ; 78:2, s. 194-204
  • Tidskriftsartikel (refereegranskat)abstract
    • Wnt5a is a non-canonical Wnt protein that is expressed at elevated levels in inflammatory conditions. Its role in inflammation remains unclear, although it is known that Wnt5a is expressed at a higher level in monocyte-derived myeloid dendritic cells (Mo-mDCs) than in monocytes and macrophages. The function of Wnt5a in dendritic cells (DCs) remains relatively unexplored. Here, we found that under Mo-mDC culture conditions, Wnt5a inhibited the generation of CD14(+/low) Mo-mDCs while promoting the generation of CD14(+/++) CD16(+) monocytes. We could further show that stimulation of monocytes with rWnt5a induced a rapid IL-6 production and that the rWnt5a treated Mo-mDC differentiation was restored upon blocking of IL-6. Also conditioned media from Wnt5a stimulated human breast cancer cells producing IL-6, specifically inhibited Mo-mDC differentiation. These observations are strengthened by our finding that patients with sepsis, a disease involving elevated Wnt5a and IL-6 levels, also showed a significant increase in the CD14(+) CD16(++) /CD14(+/++) CD16(+) monocyte populations, which was accompanied by a significant decrease in circulating mDCs. We finally show that under typical Mo-mDC culture conditions, monocytes isolated from sepsis patients as compared to healthy controls, preferentially differentiated into CD14(+/++) HLA-DR(++) cells. We suggest that Wnt5a is a possible candidate mediator for the CD14(+/++) CD16(+) monocyte accumulation seen in infectious disease and cancer patients. This article is protected by copyright. All rights reserved.
  •  
10.
  • Chao, Yashuan, et al. (författare)
  • Growing and Characterizing Biofilms Formed by Streptococcus pneumoniae
  • 2019
  • Ingår i: Streptococcus pneumoniae : Methods and Protocols - Methods and Protocols. - New York, NY : Springer New York. - 1940-6029. - 9781493991990 - 9781493991983 ; 1968, s. 147-171
  • Bokkapitel (refereegranskat)abstract
    • It is estimated that over 80% of bacterial infections are associated with biofilm formation. Biofilms are organized bacterial communities formed on abiotic surfaces, such as implanted or inserted medical devices, or on biological surfaces, such as epithelial linings and mucosal surfaces. Biofilm growth is advantageous for the bacterial organism as it protects the bacteria from antimicrobial host factors and allows the bacteria to reside in the host without causing excessive inflammation. Like many other opportunistic pathogens of the respiratory tract, Streptococcus pneumoniae forms biofilms during asymptomatic carriage, which promotes, among other things, persistence in the niche, intraspecies and interspecies communication, and spread of bacterial DNA. Changes within the colonizing environment resulting from host assaults, such as virus infection, can induce biofilm dispersion where bacteria leave the biofilm and disseminate to other sites with ensuing infection. In this chapter, we present methodology to form complex biofilms in the nasopharynx of mice and to evaluate the biofilm structure and function in this environment. Furthermore, we present methods that recapitulate this biofilm phenotype in vitro by incorporating crucial factors associated with the host environment and describe how these models can be used to study biofilm function, transformation, and dispersion.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 30

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy