SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bergman JP) "

Sökning: WFRF:(Bergman JP)

  • Resultat 1-10 av 52
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  • Bergman, JP, et al. (författare)
  • Characterisation and defects in silicon carbide
  • 2002
  • Ingår i: Materials Science Forum, Vols. 389-393.
  • Konferensbidrag (refereegranskat)abstract
    • In this work we present experimental results of several defects in 4H Sic that are of interest both from a fundamental and physical point of view. And also of great importance for device applications utilizing the Sic material. These defects include the temperature stable so called D1 defect, which is created after irradiation. This optical emission has been identified as an isoelectronic defect bound at a hole attractive pseudodonor, and we have been able to correlate this to the electrically observed hole trap HS1 seen in minority carrier transient spectroscopy (MCTS). It also includes the UD1 defect observed using absorption and FTIR and which is believed to be responsible for the semi-insulating behavior of material grown by the High temperature, HTCVD technique. Finally, we have described the formation and proper-ties of critical, generated defect in high power Sic bipolar devices. This is identified as a stacking fault in the Sic basal plane, using mainly white beam synchrotron Xray topography. The stacking fault is both optically and electrically active, by forming extended local potential reduction of the conduction band.
  •  
7.
  •  
8.
  • Carlsson, Fredrik, et al. (författare)
  • D-II PL intensity dependence on dose, implantation temperature and implanted species in 4H-and 6H-SiC
  • 2003
  • Ingår i: Materials Science Forum, Vols. 433-436. ; , s. 345-348
  • Konferensbidrag (refereegranskat)abstract
    • In most semi-conductor processing ion implantation is a key technology. The drawback of ion implantation is that a great deal of lattice defects, such as vacancies, interstitials, anti sites and complexes, are introduced. The annealing behaviour of these defects is important for the viability of ion implantation as a commonly used method. In SiC a defect that is only seen after ion implantation and not after irradiation with neutrons or electrons is the D-II defect. The use of Si or C as implanted species have made it possible to investigate the D-II photoluminescence (PL) intensity dependence on an excess of either of the two constituents in SiC. The effect of performing a hot implant at 600degreesC compared to a room temperature implant was also looked into. The D-II PL intensity was measured after a 1500degreesC anneal. When the implantation was performed at room temperature the C implanted samples showed a significantly higher D-II luminescence than the Si implanted. This makes it tempting to assume that a surplus of C and likely C interstitials are involved in the defect formation. However, when the implantation is done at 600degreesC the difference between Si and C implanted samples almost disappears and a slightly higher D-II intensity can be seen in the Si implanted samples. This effect may be due to the mobility of C interstitials at temperatures above 500degreesC. This clearly demonstrates the effect of hot implantation that there is a major change in D-II PL intensity even after a 1500degreesC anneal.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 52

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy