SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bergström Ann Kristin 1968 ) "

Sökning: WFRF:(Bergström Ann Kristin 1968 )

  • Resultat 1-10 av 38
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Berggren, Martin, et al. (författare)
  • Nutrient limitation masks the dissolved organic matter composition effects on bacterial metabolism in unproductive freshwaters
  • 2023
  • Ingår i: Limnology and Oceanography. - : John Wiley & Sons. - 0024-3590 .- 1939-5590. ; 68:9, s. 2059-2069
  • Tidskriftsartikel (refereegranskat)abstract
    • Aquatic microbial responses to changes in the amount and composition of dissolved organic carbon (DOC) are of fundamental ecological and biogeochemical importance. Parallel factor (PARAFAC) analysis of excitation–emission fluorescence spectra is a common tool to characterize DOC, yet its ability to predict bacterial production (BP), bacterial respiration (BR), and bacterial growth efficiency (BGE) vary widely, potentially because inorganic nutrient limitation decouples microbial processes from their dependence on DOC composition. We used 28-d bioassays with water from 19 lakes, streams, and rivers in northern Sweden to test how much the links between bacterial metabolism and fluorescence PARAFAC components depend on experimental additions of inorganic nutrients. We found a significant interaction effect between nutrient addition and fluorescence on carbon-specific BP, and weak evidence for influence on BGE by the same interaction (p = 0.1), but no corresponding interaction effect on BR. A practical implication of this interaction was that fluorescence components could explain more than twice as much of the variability in carbon-specific BP (R2 = 0.90) and BGE (R2 = 0.70) after nitrogen and phosphorus addition, compared with control incubations. Our results suggest that an increased supply of labile DOC relative to ambient phosphorus and nitrogen induces gradually larger degrees of nutrient limitation of BP, which in turn decouple BP and BGE from fluorescence signals. Thus, while fluorescence does contain precise information about the degree to which DOC can support microbial processes, this information may be hidden in field studies due to nutrient limitation of bacterial metabolism.
  •  
2.
  • Bergström, Ann-Kristin, 1968-, et al. (författare)
  • Biomass, community composition and N:P recycling ratios of zooplankton in northern high-latitude lakes with contrasting levels of N deposition and dissolved organic carbon
  • 2022
  • Ingår i: Freshwater Biology. - : John Wiley & Sons. - 0046-5070 .- 1365-2427. ; 67:9, s. 1508-1520
  • Tidskriftsartikel (refereegranskat)abstract
    • Global changes are causing decreases in inorganic nitrogen (N) concentrations, increases in coloured dissolved organic carbon (DOC) concentrations, and decreases in dissolved inorganic N to total phosphorus ratios (DIN:TP) in northern lakes. The effects of these changes on phytoplankton and zooplankton biomass and the N:P recycling ratio of zooplankton remain unresolved.In 33 Swedish headwater lakes across subarctic-to-boreal gradients with different levels of N deposition (low N in the north [Västerbotten, boreal; Abisko, subarctic] vs. high N in the south [Värmland, boreal; Jämtland, subarctic]), we measured water chemistry, phytoplankton biomass (chlorophyll-a [Chl-a], Chl-a:TP), seston mineral quality (C:P, N:P), as well as zooplankton biomass, community composition, and C:N:P stoichiometry. We estimated nutrient imbalances and the N:P recycling ratios of zooplankton using ecological stoichiometry models.There was a large-scale gradient from low lake DIN and DIN:TP in the north to high DIN and DIN:TP in the south, with lower DIN:TP in lakes coinciding with higher DOC within each region. Lower lake DIN was associated with lower phytoplankton biomass (lower Chl-a:TP). Lower lake DIN:TP was associated with richer seston mineral quality (lower seston C:P and N:P) and higher zooplankton biomass.Zooplankton community composition differed in the north vs. south, with a dominance of N-requiring calanoid copepods with high N:P in the north and P-requiring cladocerans with low N:P in the south. Also, greater differences in zooplankton community composition were found between subarctic regions (with lower DOC) than between boreal regions (with higher DOC), suggesting that increases in lake DOC and associated declines in lake DIN:TP reduce differences in zooplankton community composition.The combination of lower lake DIN, higher lake DOC, and lower lake DIN:TP led to reduced zooplankton N:P recycling ratios, possibly by reducing seston N:P and/or by enhancing calanoid copepod dominance in the zooplankton community.Our findings suggest that the combination of declining N deposition and increasing lake browning in northern high-latitude lakes will reduce phytoplankton biomass, but will concurrently enhance seston mineral quality and probably also zooplankton biomass and their recycling efficiency of P relative to N.
  •  
3.
  • Bergström, Ann-Kristin, 1968-, et al. (författare)
  • Changes in nutritional quality and nutrient limitation regimes of phytoplankton in response to declining N deposition in mountain lakes
  • 2020
  • Ingår i: Aquatic Sciences. - : Springer. - 1015-1621 .- 1420-9055. ; 82:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Phytoplankton play a key role in supporting aquatic food webs. However, the effects of ongoing large-scale changes in the concentrations and stoichiometry of important biological compounds [dissolved inorganic N (DIN), total phosphorus (TP), dissolved organic carbon (DOC) and DIN:TP] on the development and nutritional quality of phytoplankton for higher trophic levels are unclear. We conducted lake studies and in situ bioassay experiments in two Swedish mountain regions [Abisko (north) and Jamtland (south)] with different N deposition and where lakes in each region were distributed along a similar gradient in lake DOC (2-7 mg L-1) to assess whether differences in nutrients, DOC and DIN:TP induced differences in phytoplankton quantity [chlorophyll a (Chl-a) and seston carbon (C)] and quality [seston C:N:P stoichiometry and fatty acid (FA) composition]. Using long-term monitoring data from lakes in these two mountain regions, we found declining long-term trends in N deposition and lake DIN and total TP concentrations, but not in lake DIN:TP. Lakes in Abisko received lower N deposition and had lower DIN:TP than those in Jamtland. Phytoplankton was N- to NP-limited in Abisko lakes but NP dual-limited in Jamtland lakes. The N fertilization effects induced by higher DIN:TP were weak on phytoplankton quantity but strong on phytoplankton quality. The phytoplankton had lower eicosapentaenoic acid (EPA) content and higher P content (lower seston C:P) in Abisko compared to in Jamtland. In addition, the quality of the DOC (as indicated by its aromaticity and SUVA) influenced not only the light conditions and the seston C:P ratios, but also the FA composition. We found higher bacteria FA concentrations in seston in Abisko than in Jamtland, despite lower amounts of FA of terrestrial origin in Abisko. Our findings suggest that declining N deposition and enhanced colored terrestrial C loadings leads to lower nutritional quality of basal resources for higher consumers in mountain lakes.
  •  
4.
  • Bergström, Ann-Kristin, 1968-, et al. (författare)
  • Declining calcium concentration drives shifts toward smaller and less nutritious zooplankton in northern lakes
  • 2024
  • Ingår i: Global Change Biology. - : John Wiley & Sons. - 1354-1013 .- 1365-2486. ; 30:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Zooplankton community composition of northern lakes is changing due to the interactive effects of climate change and recovery from acidification, yet limited data are available to assess these changes combined. Here, we built a database using archives of temperature, water chemistry and zooplankton data from 60 Scandinavian lakes that represent broad spatial and temporal gradients in key parameters: temperature, calcium (Ca), total phosphorus (TP), total organic carbon (TOC), and pH. Using machine learning techniques, we found that Ca was the most important determinant of the relative abundance of all zooplankton groups studied, while pH was second, and TOC third in importance. Further, we found that Ca is declining in almost all lakes, and we detected a critical Ca threshold in lake water of 1.3 mg L−1, below which the relative abundance of zooplankton shifts toward dominance of Holopedium gibberum and small cladocerans at the expense of Daphnia and copepods. Our findings suggest that low Ca concentrations may shape zooplankton communities, and that current trajectories of Ca decline could promote widespread changes in pelagic food webs as zooplankton are important trophic links from phytoplankton to fish and different zooplankton species play different roles in this context.
  •  
5.
  • Bergström, Ann-Kristin, 1968-, et al. (författare)
  • Effects of nitrogen enrichment on zooplankton biomass and N:P recycling ratios across a DOC gradient in northern-latitude lakes
  • 2021
  • Ingår i: Hydrobiologia. - : Springer. - 0018-8158 .- 1573-5117. ; 848:21, s. 4991-5010
  • Tidskriftsartikel (refereegranskat)abstract
    • We used data from whole-lake studies to assess how changes in food quantity (phytoplankton biomass) and quality (phytoplankton community composition, seston C:P and N:P) with N fertilization affect zooplankton biomass, community composition and C:N:P stoichiometry, and their N:P recycling ratio along a gradient in lake DOC concentrations. We found that despite major differences in phytoplankton biomass with DOC (unimodal distributions, especially with N fertilization), no major differences in zooplankton biomass were detectable. Instead, phytoplankton to zooplankton biomass ratios were high, especially at intermediate DOC and after N fertilization, implying low trophic transfer efficiencies. An explanation for the observed low phytoplankton resource use, and biomass responses in zooplankton, was dominance of colony forming chlorophytes of reduced edibility at intermediate lake DOC, combined with reduced phytoplankton mineral quality (enhanced seston N:P) with N fertilization. N fertilization, however, increased zooplankton N:P recycling ratios, with largest impact at low DOC where phytoplankton benefitted from light sufficiently to cause enhanced seston N:P. Our results suggest that although N enrichment and increased phytoplankton biomass do not necessarily increase zooplankton biomass, bottom-up effects may still impact zooplankton and their N:P recycling ratio through promotion of phytoplankton species of low edibility and altered mineral quality.
  •  
6.
  •  
7.
  • Bergström, Ann-Kristin, 1968-, et al. (författare)
  • Light and nutrient control phytoplankton biomass responses to global change in northern lakes
  • 2019
  • Ingår i: Global Change Biology. - : John Wiley & Sons. - 1354-1013 .- 1365-2486. ; 25:6, s. 2021-2029
  • Tidskriftsartikel (refereegranskat)abstract
    • Global change affects terrestrial loadings of colored dissolved organic carbon (DOC) and nutrients to northern lakes. Still, little is known about how phytoplankton respond to changes in light and nutrient availability across gradients in lake DOC. In this study, we used results from whole-lake studies in northern Sweden to show that annual mean phytoplankton biomass expressed unimodal curved relationships across lake DOC gradients, peaking at threshold DOC levels of around 11 mg/L. Whole-lake single nutrient enrichment in selected lakes caused elevated biomass, with most pronounced effect at the threshold DOC level. These patterns give support to the suggested dual control by DOC on phytoplankton via nutrient (positively) and light (negatively) availability and imply that the lakes' location along the DOC axis is critical in determining to what extent phytoplankton respond to changes in DOC and/or nutrient loadings. By using data from the large Swedish Lake Monitoring Survey, we further estimated that 80% of northern Swedish lakes are below the DOC threshold, potentially experiencing increased phytoplankton biomass with browning alone, and/or combined with nutrient enrichment. The results support the previous model results on effects of browning and eutrophication on lake phytoplankton, and provide important understanding of how northern lakes may respond to future global changes.
  •  
8.
  • Callisto Puts, Isolde, et al. (författare)
  • Contrasting impacts of warming and browning on periphyton
  • 2023
  • Ingår i: Limnology and Oceanography Letters. - : John Wiley & Sons. - 2378-2242. ; 8:4, s. 628-638
  • Tidskriftsartikel (refereegranskat)abstract
    • We tested interactive effects of warming (+2°C) and browning on periphyton accrual and pigment composition when grown on a synthetic substrate (plastic strips) in the euphotic zone of 16 experimental ponds. We found that increased colored dissolved organic matter (cDOM) and associated nutrients alone, or in combination with warming, resulted in a substantially enhanced biomass accrual of periphyton, and a comparatively smaller increase in phytoplankton. This illustrates that periphyton is capable of using nutrients associated with cDOM, and by this may affect nutrient availability for phytoplankton. However, warming weakened the positive impact of browning on periphyton accrual, possibly by thermal compensation inferred from altered pigment composition, and/or changes in community composition. Our results illustrate multiple impacts of climate change on algal growth, which could have implications for productivity and consumer resource use, especially in shallow areas in northern lakes.
  •  
9.
  • Creed, Irena F., et al. (författare)
  • Global change-driven effects on dissolved organic matter composition : Implications for food webs of northern lakes
  • 2018
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 24:8, s. 3692-3714
  • Forskningsöversikt (refereegranskat)abstract
    • Northern ecosystems are experiencing some of the most dramatic impacts of global change on Earth. Rising temperatures, hydrological intensification, changes in atmospheric acid deposition and associated acidification recovery, and changes in vegetative cover are resulting in fundamental changes in terrestrial-aquatic biogeochemical linkages. The effects of global change are readily observed in alterations in the supply of dissolved organic matter (DOM)-the messenger between terrestrial and lake ecosystems-with potentially profound effects on the structure and function of lakes. Northern terrestrial ecosystems contain substantial stores of organic matter and filter or funnel DOM, affecting the timing and magnitude of DOM delivery to surface waters. This terrestrial DOM is processed in streams, rivers, and lakes, ultimately shifting its composition, stoichiometry, and bioavailability. Here, we explore the potential consequences of these global change-driven effects for lake food webs at northern latitudes. Notably, we provide evidence that increased allochthonous DOM supply to lakes is overwhelming increased autochthonous DOM supply that potentially results from earlier ice-out and a longer growing season. Furthermore, we assess the potential implications of this shift for the nutritional quality of autotrophs in terms of their stoichiometry, fatty acid composition, toxin production, and methylmercury concentration, and therefore, contaminant transfer through the food web. We conclude that global change in northern regions leads not only to reduced primary productivity but also to nutritionally poorer lake food webs, with discernible consequences for the trophic web to fish and humans.
  •  
10.
  • Faithfull, Carolyn, 1982-, et al. (författare)
  • Bottom–up carbon subsidies and top–down predation pressure interact to affect aquatic food web structure
  • 2011
  • Ingår i: Oikos. - : John Wiley. - 0030-1299 .- 1600-0706. ; 120:2, s. 311-320
  • Tidskriftsartikel (refereegranskat)abstract
    • Human impacts such as eutrophication, overexploitation and climate change currently threaten future global food and drinking water supplies. Consequently, it is important that we understand how anthropogenic resource (bottom–up) and consumer (top–down) manipulations affect aquatic food web structure and production. Future climate changes are predicted to increase the inputs of terrestrial dissolved organic carbon to lakes. These carbon subsidies can either increase or decrease total basal production in aquatic food webs, depending on bacterial competition with phytoplankton for nutrients. This study examines the effects of carbon subsidies (bottom–up) on a pelagic community exposed to different levels of top–down predation. We conducted a large scale mesocosm experiment in an oligotrophic clear water lake in northern Sweden, using a natural plankton community exposed to three levels of glucose addition (0, 420 and 2100 mg C l–1 total added glucose) and three levels of young-of-the-year perch Perca fluviatilis density (0, 0.56 and 2 individuals m–3). Bacterioplankton production doubled with glucose addition, but phytoplankton production was unaffected, in contrast to previous studies that have manipulated carbon, nutrients or light simultaneously. This suggests that carbon addition alone is not sufficient to reduce autotrophic production, at least in an oligotrophic lake dominated by mixotrophic phytoplankton. Larval perch grazing did not produce a classical trophic cascade, but substantially altered the species composition of crustacean zooplankton and ciliate trophic levels. Glucose addition increased the biomass of rotifers, thus potentially increasing energy transfer through the heterotrophic pathway, but only when fish were absent. This study illustrates that changes in community structure due to selective feeding by top-predators can determine the influence of bottom–up carbon subsidies.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 38
Typ av publikation
tidskriftsartikel (27)
annan publikation (6)
doktorsavhandling (3)
konferensbidrag (1)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (28)
övrigt vetenskapligt/konstnärligt (10)
Författare/redaktör
Bergström, Ann-Krist ... (35)
Jonsson, Anders, 196 ... (11)
Vrede, Tobias (10)
Creed, Irena F. (10)
Isles, Peter D. F. (9)
Karlsson, Jan, 1974- (8)
visa fler...
Ask, Jenny, 1976- (7)
Sponseller, Ryan A. (7)
Lau, Danny C. P. (5)
Kortelainen, Pirkko (4)
Giesler, Reiner (4)
Hessen, Dag O. (3)
Rocher-Ros, Gerard (3)
Berggren, Martin (3)
Deininger, Anne (3)
Geibrink, Erik (3)
Vuorenmaa, Jussi (3)
Bishop, Kevin (2)
Wu, Pianpian (2)
Drakare, Stina (2)
Vuorio, Kristiina (2)
Verheijen, Hendricus (2)
Palstev, Aleksey (2)
Kahilainen, Kimmo K. (2)
Hessen, Dag Olav (2)
Laudon, Hjalmar (1)
Andersson, Agneta (1)
Rusak, James A. (1)
Weyhenmeyer, Gesa A. (1)
Kritzberg, Emma (1)
Sonesten, Lars (1)
Åkerblom, Staffan (1)
Hensgens, Geert (1)
Klaminder, Jonatan, ... (1)
Bastviken, David, 19 ... (1)
Grimm, Nancy B. (1)
Byström, Pär (1)
Huss, Magnus (1)
Cherif, Mehdi (1)
Karlsson, Jan, 1969- (1)
Jansson, Mats, 1947- (1)
Klaus, Marcus (1)
McKnight, Diane M. (1)
Pomati, Francesco (1)
Ye, Linlin (1)
de Wit, Heleen A. (1)
Deininger, A. (1)
Siewert, Matthias B. ... (1)
Bravo, Andrea Garcia (1)
Kainz, Martin J. (1)
visa färre...
Lärosäte
Umeå universitet (38)
Sveriges Lantbruksuniversitet (10)
Lunds universitet (3)
Uppsala universitet (2)
Linköpings universitet (1)
Språk
Engelska (38)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (34)
Lantbruksvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy