SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Bergström Christel A. S. Docent) "

Search: WFRF:(Bergström Christel A. S. Docent)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Fagerberg, Jonas H. (author)
  • Experimental and Computational Predictions of Drug Solubility in Human Gastrointestinal Fluids
  • 2014
  • Doctoral thesis (other academic/artistic)abstract
    • The aqueous solubility of a drug is viewed as a pivotal property for its oral absorption since only dissolved molecules can permeate the gut wall and reach the systemic circulation. The fluids in the intestine, however, do not only consist of water and therefore poor water solubility may not necessarily imply a poor solubility in the intestinal fluids and resulting low bioavailability. This thesis addresses the determination of drug solubility and dissolution rates in biorelevant dissolution media (BDM) with the aim of applying these methods to the early stages of drug discovery, where there is a need to reduce the volume of the medium and the amount of solid drug used in testing. The thesis also addresses the need for computational methods for predicting solubility in intestinal fluids and, hence, allowing in silico screening of drugs yet to be synthesized. The apparent solubility and dissolution behavior of large series of lipophilic and other diverse compounds in BDM were studied using a miniaturized method developed herein. The media used in the experimental design provided an opportunity to assess the effects of charge, solubilization in mixed lipid aggregates, and ethanol in BDM. Highly lipophilic and uncharged drugs were efficiently solubilized by aggregates in the BDM while solubilization was decreased with charge. The decrease was more pronounced for negatively charged drugs. The solubility of anionic and neutral drugs was significantly increased by the addition of ethanol to the medium and absorption simulations showed that intake of alcohol could lead to increased plasma concentrations of neutral compounds. Statistical models based on calculated molecular descriptors that accurately predicted the apparent solubility in fasted-state simulated intestinal fluid and in aspirated human intestinal fluid were also developed. In summary, the work undertaken in this thesis has resulted in new experimental and computational models for assessment of the dissolution and solubility of poorly water-soluble compounds in BDM. The models are applicable in the early discovery and development phases for predicting physiologically relevant solubility and the effects thereof on drug absorption.  
  •  
2.
  • Pedersen, Jenny M. (author)
  • ATP-Binding-Cassette Transporters in Biliary Efflux and Drug-Induced Liver Injury
  • 2013
  • Doctoral thesis (other academic/artistic)abstract
    • Membrane transport proteins are known to influence the absorption, distribution, metabolism, excretion and toxicity (ADMET) of drugs. At the onset of this thesis work, only a few structure-activity models, in general describing P-glycoprotein (Pgp/ABCB1) interactions, were developed using small datasets with little structural diversity. In this thesis, drug-transport protein interactions were explored using large, diverse datasets representing the chemical space of orally administered registered drugs. Focus was set on the ATP-binding cassette (ABC) transport proteins expressed in the canalicular membrane of human hepatocytes.The inhibition of the ABC transport proteins multidrug-resistance associated protein 2 (MRP2/ABCC2) and bile salt export pump (BSEP/ABCB11) was experimentally investigated using membrane vesicles from cells overexpressing the investigated proteins and sandwich cultured human hepatocytes (SCHH). Several previously unknown inhibitors were identified for both of the proteins and predictive in silico models were developed. Furthermore, a clear association between BSEP inhibition and clinically reported drug induced liver injuries (DILI) was identified. For the first time, an in silico model that described combined inhibition of Pgp, MRP2 and breast cancer resistance protein (BCRP/ABCG2) was developed using a large, structurally diverse dataset. Lipophilic weak bases were more often found to be general ABC inhibitors in comparison to other drugs. In early drug discovery, in silico models can be used as predictive filters in the drug candidate selection process and membrane vesicles as a first experimental screening tool to investigate protein interactions.In summary, the present work has led to an increased understanding of molecular properties important in ABC inhibition as well as the potential influence of ABC proteins in adverse drug reactions. A number of previously unknown ABC inhibitors were identified and predictive computational models were developed.
  •  
3.
  • Sinko, Patrick D., et al. (author)
  • Estimation of the concentration boundary layer adjacent to a flat surface using computational fluid dynamics
  • 2024
  • In: International Journal of Pharmaceutics. - : Elsevier BV. - 0378-5173 .- 1873-3476. ; 653
  • Journal article (peer-reviewed)abstract
    • Dissolution-permeation (D/P) experiments are widely used during preclinical development due to producing results with better predictability than traditional monophasic experiments. However, it is difficult to compare absorption across in vitro setups given the propensity to only report apparent permeability. We therefore developed an approach to predict the concentration boundary layer for any D/P device by using computational fluid dynamics (CFD). The Navier-Stokes and continuity equation in 2D were solved numerically in MATLAB and by finite element methods in COMSOL v6.1 to predict the momentum (ηf′) and concentration ηg boundary layer for a flow over a flat plate, i.e. the classical Blasius boundary layer flow. A MATLAB algorithm was developed to calculate the edge of either boundary layer. The methodology to determine the concentration boundary layer based on Blasius's analysis provided an accurate estimate for both ηf′ and ηg, resulting in, ηf′/ηg, at high Schmidt numbers (Sc ∼ 1000) within 14 % of the Blasius solution and 6.6 % of the accepted Schmidt number correlation (Sc1/3=ηf′/ηg). The methodology based on the Blasius analysis of the concentration boundary layer using velocity and concentration profiles computed using CFD presented herein will enable characterization/analysis of complex D/P apparatuses used in preclinical development, where an analytical solution may not be available.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view