SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bergvall Nils professor) "

Sökning: WFRF:(Bergvall Nils professor)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Olivo, Martino (författare)
  • Neutrino emission from high-energy component gamma-ray bursts
  • 2010
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Gamma-ray bursts (GRBs) are brief and sudden explosions radiating most of their energy in the soft γ-ray band ( 100 keV). In the context of multimessenger astroparticle physics recent observations of GRBs provide an excellent benchmark for testing theoretical models of high energy emission mechanisms. Acceleration of hadrons in the engine is expected to produce high energy neutrinos and gamma-rays simultaneously via π±/π0 decays, thus reinforcing the motivation for coincident searches in km3 neutrino telescopes. The Waxman-Bachall spectra and the corresponding expected neutrino rates in IceCube are derived here for GRB090510 amd GRB090902B recently detected by the Fermi Large Area Telescope. The implications of the significant detection of deviations from the Band function fit in photon spectra and a model that explains these extra-components in terms of π0-decay photons are presented here and the relevance to neutrino astronomy is shown.
  •  
2.
  • Zackrisson, Erik, 1974- (författare)
  • Quasars and Low Surface Brightness Galaxies as Probes of Dark Matter
  • 2005
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Most of the matter in the Universe appears to be in some form which does not emit or absorb light. While evidence for the existence of this dark matter has accumulated over the last seventy years, its nature remains elusive. In this thesis, quasars and low surface brightness galaxies (LSBGs) are used to investigate the properties of the dark matter. Quasars are extremely bright light sources which can be seen over vast distances. These cosmic beacons may be used to constrain dark matter in the form of low-mass, compact objects along the line of sight, as such objects are expected to induce brightness fluctuations in quasars through gravitational microlensing effects. Using a numerical microlensing model, we demonstrate that the uncertainty in the typical size of the optical continuum-emitting region in quasars represents the main obstacle in this procedure. We also show that, contrary to claims in the literature, microlensing fails to explain the observed long-term optical variability of quasars. Here, quasar distances are inferred from their redshifts, which are assumed to stem from the expansion of the Universe. Some astronomers do however defend the view that quasar redshifts could have a different origin. A number of potential methods for falsifying claims of such non-cosmological redshifts are proposed. As the ratio of dark to luminous matter is known to be unusually high in LSBGs, these objects have become the prime targets for probing dark matter halos around galaxies. Here, we use spectral evolutionary models to constrain the properties of the stellar populations in a class of unusually blue LSBGs. Using rotation curve data obtained at the ESO Very Large Telescope, we also investigate the density profiles of their dark halos. We find our measurements to be inconsistent with the predictions of the currently favoured cold dark matter scenario.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy