SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bergwall Lovisa) "

Sökning: WFRF:(Bergwall Lovisa)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bergwall, Lovisa (författare)
  • A Podocyte view on RhoGTPases and actin cytoskeleton regulation
  • 2020
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Proteinuria is a hallmark symptom of chronic kidney disease, that if left to persist constitutes a risk for progression of disease. Symptomatic treatment aiming at decreasing proteinuria is therefore standard practice. Curative treatments for the underlying cause of disease are however lacking and treatments currently in use to induce disease remission are associated with unfavorable side effects. Dysregulation of the podocyte actin cytoskeleton underlies the pathological process called foot process effacement (FPE), which is one of the leading causes of proteinuria. The studies included in this thesis have focused on podocyte actin cytoskeleton regulation and a group of proteins called RhoGTPases, known to be involved in actin cytoskeleton regulation in podocytes. In the first study, glomerular microarray analysis showed an increase in the expression of the melanocortin 1-receptor (MC1R) in renal diseases focal segmental glomerulosclerosis and membranous nephropathy. Subsequent mass spectrometry analysis in combination with pathway and biochemical analysis revealed the podocyte protective effects of MC1R stimulation in vitro. Activation of MC1R proved to be stabilizing the podocyte actin cytoskeleton through inhibition of the epidermal growth factor receptor (EGFR) and maintenance of the actin associated protein synaptopodin. In the second study, the depletion of the prenylation enzyme Geranylgeranyl transferase type I (GGTase-I) in podocytes led to the development of proteinuria and FPE in mice due to an imbalanced RhoGTPase activity and disruption of the actin cytoskeleton. These findings suggest that GGTase-I activity is essential for podocyte function. In the last study, a guanine nucleotide exchange factor (activator of RhoGTPases) named Bpix was identified to be modulated in podocytes following treatment with a renal stressor, using mass spectrometry analysis. Gene silencing of Bpix protected against actin cytoskeleton remodulation in a model of podocyte injury, demonstrating the importance of Bpix for podocyte actin cytoskeleton regulation. In conclusion, the results in this thesis confirm the importance of actin cytoskeleton regulation for podocyte integrity. Further on, the results provide new information on actin cytoskeleton regulatory pathways involving RhoGTPases in podocytes, which can be of importance for future attempts in finding targeted treatments of proteinuria and chronic kidney disease.
  •  
2.
  • Bergwall, Lovisa, et al. (författare)
  • Amplification of the Melanocortin-1 Receptor in Nephrotic Syndrome Identifies a Target for Podocyte Cytoskeleton Stabilization
  • 2018
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • The melanocortin-1 receptor (MC1R) in podocytes has been suggested as the mediator of the ACTH renoprotective effect in patients with nephrotic syndrome with the mechanism of action beeing stabilization of the podocyte actin cytoskeleton. To understand how melanocortin receptors are regulated in nephrotic syndrome and how they are involved in restoration of filtration barrier function, melanocortin receptor expression was evaluated in patients and a rat model of nephrotic syndrome in combination with cell culture analysis. Phosphoproteomics was applied and identified MC1R pathways confirmed using biochemical analysis. We found that glomerular MC1R expression was increased in nephrotic syndrome, both in humans and in a rat model. A MC1R agonist protected podocytes from protamine sulfate induced stress fiber loss with the top ranked phoshoproteomic MC1R activated pathway beeing actin cytoskeleton signaling. Actin stabilization through the MC1R consisted of ERK1/2 dependent phosphorylation and inactivation of EGFR signaling with stabilization of synaptopodin and stressfibers in podocytes. These results further explain how patients with nephrotic syndrome show responsiveness to MC1R receptor activation by decreasing EGFR signaling and as a consequence restore filtration barrier function by stabilizing the podocyte actin cytoskeleton.
  •  
3.
  • Boi, Roberto, et al. (författare)
  • Podocyte Geranylgeranyl Transferase Type-I Is Essential for Maintenance of the Glomerular Filtration Barrier
  • 2023
  • Ingår i: Journal of the American Society of Nephrology. - : Ovid Technologies (Wolters Kluwer Health). - 1046-6673 .- 1533-3450. ; 34:4, s. 641-655
  • Tidskriftsartikel (refereegranskat)abstract
    • Significance StatementA tightly regulated actin cytoskeleton attained through balanced activity of RhoGTPases is crucial to maintaining podocyte function. However, how RhoGTPases are regulated by geranylgeranylation, a post-translational modification, has been unexplored. The authors found that loss of the geranylgeranylation enzyme geranylgeranyl transferase type-I (GGTase-I) in podocytes led to progressive albuminuria and foot process effacement in podocyte-specific GGTase-I knockout mice. In cultured podocytes, the absence of geranylgeranylation resulted in altered activity of its downstream substrates Rac1, RhoA, Cdc42, and Rap1, leading to alterations of & beta;1-integrins and actin cytoskeleton structural changes. These findings highlight the importance of geranylgeranylation in the dynamic management of RhoGTPases and Rap1 to control podocyte function, providing new knowledge about podocyte biology and glomerular filtration barrier function.BackgroundImpairment of the glomerular filtration barrier is in part attributed to podocyte foot process effacement (FPE), entailing disruption of the actin cytoskeleton and the slit diaphragm. Maintenance of the actin cytoskeleton, which contains a complex signaling network through its connections to slit diaphragm and focal adhesion proteins, is thus considered crucial to preserving podocyte structure and function. A dynamic yet tightly regulated cytoskeleton is attained through balanced activity of RhoGTPases. Most RhoGTPases are post-translationally modified by the enzyme geranylgeranyl transferase type-I (GGTase-I). Although geranylgeranylation has been shown to regulate activities of RhoGTPases and RasGTPase Rap1, its significance in podocytes is unknown.MethodsWe used immunofluorescence to localize GGTase-I, which was expressed mainly by podocytes in the glomeruli. To define geranylgeranylation's role in podocytes, we generated podocyte-specific GGTase-I knockout mice. We used transmission electron microscopy to evaluate FPE and measurements of urinary albumin excretion to analyze filtration barrier function. Geranylgeranylation's effects on RhoGTPases and Rap1 function were studied in vitro by knockdown or inhibition of GGTase-I. We used immunocytochemistry to study structural modifications of the actin cytoskeleton and & beta;1 integrins.ResultsDepletion of GGTase-I in podocytes in vivo resulted in FPE and concomitant early-onset progressive albuminuria. A reduction of GGTase-I activity in cultured podocytes disrupted RhoGTPase balance by markedly increasing activity of RhoA, Rac1, and Cdc42 together with Rap1, resulting in dysregulation of the actin cytoskeleton and altered distribution of & beta;1 integrins.ConclusionsThese findings indicate that geranylgeranylation is of crucial importance for the maintenance of the delicate equilibrium of RhoGTPases and Rap1 in podocytes and consequently for the maintenance of glomerular integrity and function. A tightly regulated actin cytoskeleton attained through balanced activity of RhoGTPases is crucial to maintaining podocyte function. However, how RhoGTPases are regulated by geranylgeranylation, a post-translational modification, has been unexplored. The authors found that loss of the geranylgeranylation enzyme geranylgeranyl transferase type-I (GGTase-I) in podocytes led to progressive albuminuria and foot process effacement in podocyte-specific GGTase-I knockout mice. In cultured podocytes, the absence of geranylgeranylation resulted in altered activity of its downstream substrates Rac1, RhoA, Cdc42, and Rap1, leading to alterations of & beta;1-integrins and actin cytoskeleton structural changes. These findings highlight the importance of geranylgeranylation in the dynamic management of RhoGTPases and Rap1 to control podocyte function, providing new knowledge about podocyte biology and glomerular filtration barrier function.
  •  
4.
  • Buvall, Lisa, 1976, et al. (författare)
  • Orellanine specifically targets renal clear cell carcinoma
  • 2017
  • Ingår i: Oncotarget. - : Impact Journals, LLC. - 1949-2553. ; 8:53, s. 91085-91098
  • Tidskriftsartikel (refereegranskat)abstract
    • Renal cell carcinoma (RCC), arising from the proximal tubule in the kidney, accounts for approximately 85% of kidney cancers and causes over 140,000 annual deaths worldwide. In the last decade, several new therapies have been identified for treatment of metastatic RCC. Although these therapies increase survival time compared to standard care, none of them has curative properties. The nephrotoxin orellanine specifically targets proximal tubular epithelial cells, leaving other organs unaffected. We therefore hypothesized that the selective toxicity of orellanine extends to clear cell RCC (ccRCC) cells since they emanate from proximal tubular cells. Orellanine would thus target both primary and metastatic ccRCC in vitro and in vivo. We found that orellanine induces dose-dependent cell death in proximal tubular cells and in all ccRCC cells tested, both primary and cell lines, with no toxicity detected in control cells. The toxic action of orellanine involve decreased protein synthesis, disrupted cell metabolism and induction of apoptosis. In nude rats carrying human ccRCC xenografts, brief orellanine treatment eliminated more than 90% of viable tumor mass compared to control rats. This identifies orellanine as a potential treatment concept for ccRCC patients on dialysis, due to its unique selective toxicity towards ccRCC.
  •  
5.
  • Ebefors, Kerstin, 1977, et al. (författare)
  • The Glomerulus According to the Mesangium
  • 2022
  • Ingår i: Frontiers in Medicine. - : Frontiers Media SA. - 2296-858X. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • The glomerulus is the functional unit for filtration of blood and formation of primary urine. This intricate structure is composed of the endothelium with its glycocalyx facing the blood, the glomerular basement membrane and the podocytes facing the urinary space of Bowman's capsule. The mesangial cells are the central hub connecting and supporting all these structures. The components as a unit ensure a high permselectivity hindering large plasma proteins from passing into the urine while readily filtering water and small solutes. There has been a long-standing interest and discussion regarding the functional contribution of the different cellular components but the mesangial cells have been somewhat overlooked in this context. The mesangium is situated in close proximity to all other cellular components of the glomerulus and should be considered important in pathophysiological events leading to glomerular disease. This review will highlight the role of the mesangium in both glomerular function and intra-glomerular crosstalk. It also aims to explain the role of the mesangium as a central component involved in disease onset and progression as well as signaling to maintain the functions of other glomerular cells to uphold permselectivity and glomerular health. Copyright © 2022 Ebefors, Bergwall and Nyström.
  •  
6.
  • Elvin, Johannes, et al. (författare)
  • Melanocortin 1 Receptor Agonist Protects Podocytes Through Catalase and RhoA Activation.
  • 2016
  • Ingår i: American journal of physiology. Renal physiology. - : American Physiological Society. - 1522-1466 .- 1931-857X. ; 310:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Drugs containing adrenocorticotropic hormone (ACTH) have been used as therapy for patients with nephrotic syndrome. We have previously shown that ACTH and a selective agonist for the melanocortin 1 receptor (MC1R) exert beneficial actions in experimental membranous nephropathy with reduced proteinuria, reduced oxidative stress, improved glomerular morphology and function. Our hypothesis is that MC1R activation in podocytes elicits beneficial effects by promoting stress fibers and maintaining podocyte viability. To test the hypothesis, we cultured podocytes and used highly specific agonists for the MC1R. The podocytes were subjected to the nephrotic-inducing agent puromycin aminonucleoside and downstream effects of MC1R activation on podocyte survival; antioxidant defense and cytoskeleton dynamics were studied. To increase the response and enhance the intracellular signals, podocytes were transduced to overexpress MC1R. We show that puromycin promotes MC1R expression in podocytes and that activation of the MC1R promotes an increase of catalase activity and reduces oxidative stress, which results in dephosphorylation of p190RhoGAP and formation of stress fibers through RhoA. In addition, MC1R agonists protects against apoptosis. Together, these mechanisms protect the podocyte against puromycin. Our findings strongly support the hypothesis that selective MC1R activating agonists protect podocytes and may therefore be useful to treat patients with nephrotic syndromes commonly considered as podocytopathies.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy