SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Berio Fidji) "

Sökning: WFRF:(Berio Fidji)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Berio, Fidji, et al. (författare)
  • Husbandry conditions of spotted ratfish (Hydrolagus colliei, Chimaeriformes) in aquaria for successful embryonic development and long-term survival of juveniles
  • 2024
  • Ingår i: Zoo Biology. - 0733-3188 .- 1098-2361. ; 43:2, s. 188-198
  • Tidskriftsartikel (refereegranskat)abstract
    • The spotted ratfish Hydrolagus colliei is the most common holocephalan species exhibited in aquaria worldwide for introducing deep-sea environments and raising awareness of their conservation. However, little is known about the biology of H. colliei. Current practices in aquaria allow long-term survival of sexually mature H. colliei specimens; however, this species struggles to complete a reproductive cycle in captivity mostly because embryos do not reach the hatchling stage. The aquarists of Planet Ocean Montpellier (POM, France) have bred H. colliei for 15 years and recorded parameters suitable for this species' successful embryonic and post-embryonic development. POM aquarists now regularly record egg-laying events of H. colliei and use four tanks to incubate eggs and raise neonates, late hatchlings, early and intermediate juveniles, subadults, and sexually mature specimens. In this work we provide the first long-term biometric data on H. colliei from the hatchling to the subadult stage. We also report the biotic and abiotic parameters sufficient to breed H. colliei in aquaria. We finally describe the methods used to facilitate individual monitoring of specimens along the ontogeny and several pathologies identified in this species, their putative causes, and the corresponding treatments. This work highlights the importance of ex situ research and points to the valuable outcomes of collaborative efforts between aquaria and academia in deciphering the biology of species whose study in the wild remains challenging.
  •  
2.
  • Berio, Fidji, 1992-, et al. (författare)
  • Ontogenetic Plasticity in Shoaling Behavior in a Forage Fish under Warming
  • 2023
  • Ingår i: Integrative and Comparative Biology. - 1540-7063 .- 1557-7023. ; 63:3, s. 730-741
  • Tidskriftsartikel (refereegranskat)abstract
    • Shoaling behavior is known to increase survival rates during attacks from predators, minimize foraging time, favor mating, and potentially increase locomotor efficiency. The onset of shoaling typically occurs during the larval phase, but it is unclear how it may improve across ontogenetic stages in forage fishes. Warming is known to increase metabolic rates during locomotion in solitary fish, and shoaling species may adjust their collective behavior to offset the elevated costs of swimming at higher temperatures. In this study, we quantified the effects of warming on shoaling performance across the ontogeny of a small forage fish, zebrafish (Danio rerio) at different speeds. Shoals of larval, juvenile, and adult zebrafish were acclimated at two temperatures (28°C and 32°C), and metabolic rates were quantified prior to and following nonexhaustive exercise at high speed. Shoals of five individuals were filmed in a flow tank to analyze the kinematics of collective movement. We found that zebrafish improve shoaling swimming performance from larvae to juveniles to adults. In particular, shoals become more cohesive, and both tail beat frequency (TBF) and head-to-tail amplitude decrease with ontogeny. Early life stages have higher thermal sensitivity in metabolic rates and TBF especially at high speeds, when compared to adults. Our study shows that shoaling behavior and thermal sensitivity improve as zebrafish shift from larval to juvenile to adult stages. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy