SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Berkery J.) "

Sökning: WFRF:(Berkery J.)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fenstermacher, M.E., et al. (författare)
  • DIII-D research advancing the physics basis for optimizing the tokamak approach to fusion energy
  • 2022
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 62:4
  • Tidskriftsartikel (refereegranskat)abstract
    • DIII-D physics research addresses critical challenges for the operation of ITER and the next generation of fusion energy devices. This is done through a focus on innovations to provide solutions for high performance long pulse operation, coupled with fundamental plasma physics understanding and model validation, to drive scenario development by integrating high performance core and boundary plasmas. Substantial increases in off-axis current drive efficiency from an innovative top launch system for EC power, and in pressure broadening for Alfven eigenmode control from a co-/counter-I p steerable off-axis neutral beam, all improve the prospects for optimization of future long pulse/steady state high performance tokamak operation. Fundamental studies into the modes that drive the evolution of the pedestal pressure profile and electron vs ion heat flux validate predictive models of pedestal recovery after ELMs. Understanding the physics mechanisms of ELM control and density pumpout by 3D magnetic perturbation fields leads to confident predictions for ITER and future devices. Validated modeling of high-Z shattered pellet injection for disruption mitigation, runaway electron dissipation, and techniques for disruption prediction and avoidance including machine learning, give confidence in handling disruptivity for future devices. For the non-nuclear phase of ITER, two actuators are identified to lower the L-H threshold power in hydrogen plasmas. With this physics understanding and suite of capabilities, a high poloidal beta optimized-core scenario with an internal transport barrier that projects nearly to Q = 10 in ITER at ∼8 MA was coupled to a detached divertor, and a near super H-mode optimized-pedestal scenario with co-I p beam injection was coupled to a radiative divertor. The hybrid core scenario was achieved directly, without the need for anomalous current diffusion, using off-axis current drive actuators. Also, a controller to assess proximity to stability limits and regulate β N in the ITER baseline scenario, based on plasma response to probing 3D fields, was demonstrated. Finally, innovative tokamak operation using a negative triangularity shape showed many attractive features for future pilot plant operation.
  •  
2.
  • Menard, J.E., et al. (författare)
  • Progress in understanding error-field physics in NSTX spherical torus plasmas
  • 2010
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 50:4, s. 045008-
  • Tidskriftsartikel (refereegranskat)abstract
    • The low-aspect ratio, low magnetic field and wide range of plasma beta of NSTX plasmas provide new insight into the origins and effects of magnetic field errors. An extensive array of magnetic sensors has been used to analyse error fields, to measure error-field amplification and to detect resistive wall modes (RWMs) in real time. The measured normalized error-field threshold for the onset of locked modes shows a linear scaling with plasma density, a weak to inverse dependence on toroidal field and a positive scaling with magnetic shear. These results extrapolate to a favourable error-field threshold for ITER. For these low-beta locked-mode plasmas, perturbed equilibrium calculations find that the plasma response must be included to explain the empirically determined optimal correction of NSTX error fields. In high-beta NSTX plasmas exceeding the n = 1 no-wall stability limit where the RWM is stabilized by plasma rotation, active suppression of n = 1 amplified error fields and the correction of recently discovered intrinsic n = 3 error fields have led to sustained high rotation and record durations free of low-frequency core MHD activity. For sustained rotational stabilization of the n = 1 RWM, both the rotation threshold and the magnitude of the amplification are important. At fixed normalized dissipation, kinetic damping models predict rotation thresholds for RWM stabilization to scale nearly linearly with particle orbit frequency. Studies for NSTX find that orbit frequencies computed in general geometry can deviate significantly from those computed in the high-aspect ratio and circular plasma cross-section limit, and these differences can strongly influence the predicted RWM stability. The measured and predicted RWM stability is found to be very sensitive to the E × B rotation profile near the plasma edge, and the measured critical rotation for the RWM is approximately a factor of two higher than predicted by the MARS-F code using the semi-kinetic damping model.
  •  
3.
  •  
4.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy