SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bernardo Carina) "

Sökning: WFRF:(Bernardo Carina)

  • Resultat 1-10 av 21
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bernardo, Carina, et al. (författare)
  • Association Between Estrogen Receptors and GATA3 in Bladder Cancer : A Systematic Review and Meta-Analysis of Their Clinicopathological Significance
  • 2021
  • Ingår i: Frontiers in Endocrinology. - : Frontiers Media SA. - 1664-2392. ; 12
  • Forskningsöversikt (refereegranskat)abstract
    • Background: Estrogen receptors alpha (ERα) and beta (ERβ) and the cooperating protein GATA-binding factor 3 (GATA3) have been implicated in bladder carcinogenesis and tumour progression. GATA3 and ER have been functionally linked in the establishment of luminal fate in breast tissue, but to date their relationship in bladder cancer has not been established. This information will be useful to advance diagnostic and prognostic markers. Aim: To determine the relationship between the expression of ERα, ERβ and GATA3 in bladder cancer, disclose their prognostic and diagnostic value and their association with clinicopathological characteristics. Methods: A comprehensive literature search in PubMed database was performed for all immunohistochemical studies of ERα, ERβ and/or GATA3 in bladder cancer patients. We selected eligible studies in accordance with the PRISMA guidelines and evaluated methodological quality and risk of bias based on quality criteria from the reporting recommendations for tumour MARKer (REMARK) prognostic studies. Risk of bias assessment was performed using Review Manager 5. R software was used for all statistical analysis, the packages used were meta and dmetar for the standard meta-analysis, and netmeta for the network meta-analysis. Results: Thirteen studies were eligible for ERα, 5 for ERβ and 58 for GATA3 meta-analysis. Low grade tumours showed significantly lower ERα expression. GATA3 was widely expressed in bladder tumours, especially urothelial carcinomas, with higher expression of GATA3 in low grade and low stage tumours. Data was insufficient to determine the prognostic value of either ERα or ERβ, but GATA3-positivity was associated with higher recurrence free survival. A negative correlation between ERα or ERβ positivity and GATA3 expression was disclosed. Additionally, several sources of heterogeneity were identified, which can be used to improve future studies. Conclusion: The clinicopathological value of ERα and ERβ was inconclusive due to low availability of studies using validated antibodies. Still, this meta-analysis supports GATA3 as good prognostic marker. On the contrary, ERα-positivity was associated to higher grade tumours; while ERα and ERβ were inversely correlated with GATA3 expression. Considering that it has previously been shown that bladder cancer cell lines have functional ERs, this suggests that ERα could be activated in less differentiated cells and independently of GATA3. Therefore, a comprehensive analysis of ERα and ERβ expression in BlaCa supported by complete patient clinical history is required for the identification of BlaCa subtypes and subgroups of patients expressing ERα, to investigate if they could benefit from treatment with hormonal therapy. Systematic Review Registration: Prospero, CRD42021226836.
  •  
2.
  • Bernardo, Carina, et al. (författare)
  • Molecular pathology of the luminal class of urothelial tumors
  • 2019
  • Ingår i: Journal of Pathology. - : Wiley. - 0022-3417 .- 1096-9896. ; 249:3, s. 308-318
  • Tidskriftsartikel (refereegranskat)abstract
    • Molecular subtypes of urothelial carcinoma may be divided into luminal and nonluminal tumors. Nonluminal tumors are composed of cases with basal/squamous-like or small cell/neuroendocrine features, with a consensus on the molecular characteristics of the respective subtype. In contrast, luminal tumors are more disparate with three to five suggested subtypes and with definitions that do not always cohere. To resolve some of these disparities we assembled a cohort of 344 luminal tumors classified as urothelial-like (Uro), with the subtypes UroA, UroAp, UroB, and UroC, or genomically unstable (GU) according to the LundTax system. Cases were systematically analyzed by immunohistochemistry using antibodies for proteins representing important biological processes or cellular states: KRT5, EGFR, and CDH3 for the integrity of a basal cell layer; CCNB1, Ki67, and FOXM1 for proliferation; FGFR3 and ERBB2 for receptor tyrosine kinase status; CCND1, CDKN2A(p16), RB1, and E2F3 for cell cycle regulation; PPARG, GATA3, and TP63 for the differentiation regulatory system; and KRT20 and UPK3 for the differentiation readout. We show that Uro tumors form one, albeit heterogenous, group characterized by FGFR3, CCND1, and RB1 expression, but low or absence of CDKN2A(p16) and ERBB2 expression. The opposite expression pattern is observed in GU cases. Furthermore, Uro tumors are distinguished from GU tumors by showing a high RB1/p16 expression ratio. Class defining characteristics were independent of pathological stage and growth pattern, and thus intrinsic. In Uro tumors, proliferation was limited to a well-defined single layer of basal-like cells in UroA tumors but occurred throughout the tumor parenchyma, independent of the basal layer, in the more progressed UroAp and UroC tumors. A similar change in proliferation topology was not observed in GU. We conclude that luminal urothelial carcinomas consist, at the molecular pathology level, of two major subtypes, the larger heterogenous Uro and the biologically distinct GU subtype.
  •  
3.
  • Bernardo, Carina, et al. (författare)
  • Molecular pathology of the non-luminal Ba/Sq-like and Sc/NE-like classes of urothelial tumours : An integrated immunohistochemical analysis
  • 2022
  • Ingår i: Human Pathology. - : Elsevier BV. - 0046-8177. ; 122, s. 11-24
  • Tidskriftsartikel (refereegranskat)abstract
    • Several groups have during past years produced molecular classification schemes for bladder cancer. Even though no consensus on how to define a subtype exists, one approach has been to base definitions on how tumours cluster according to their mRNA expression profiles. In many cases, obtained profiles, and thus class defining features, are affected by signals from non-tumour cells within the biopsy. To overcome this issue, we combined gene expression analyses with analyses of the actual tumour cells by extensive immunohistochemistry (IHC). By this approach we were able to define tumour cell phenotypes i.e., subtypes defined by features of the tumour cells only, and adjust mRNA-based algorithms accordingly. In the present investigation we address the non-luminal Basal/Squamous-like (Ba/Sq) and Small cell/Neuroendocrine-like (Sc/NE) categories of tumours defined by mRNA-based classification. We make use of IHC data for 15 proteins, all known to be instrumental for defining molecular subtypes of urothelial carcinoma. We show that the UroB type of tumours, frequently grouped together with Ba/Sq, are different from the Ba/Sq entity at several essential features and is a derivative of Urothelial-like tumours (Uro). We show that the Sc/NE tumours are similar to but represents extreme versions of Genomically Unstable (GU) tumours. We apply clustering to 423 cases representing all subtypes using IHC data for 14 proteins and show that the obtained grouping conforms well with the mRNA-based classification. This work describes in detail the molecular pathology of non-luminal RNA-based bladder cancer subtypes and highlight similarities/dissimilarities suggestive of origin.
  •  
4.
  • Eriksson, Pontus, et al. (författare)
  • A comparison of rule-based and centroid single-sample multiclass predictors for transcriptomic classification
  • 2022
  • Ingår i: Bioinformatics. - : Oxford University Press (OUP). - 1367-4803 .- 1367-4811. ; 38:4, s. 1022-1029
  • Tidskriftsartikel (refereegranskat)abstract
    • MOTIVATION: Gene expression-based multiclass prediction, such as tumor subtyping, is a non-trivial bioinformatic problem. Most classifier methods operate by comparing expression levels relative to other samples. Methods that base predictions on the expression pattern within a sample have been proposed as an alternative. As these methods are invariant to the cohort composition and can be applied to a sample in isolation, they can collectively be termed single sample predictors (SSP). Such predictors could potentially be used for preprocessing-free classification of new samples and be built to function across different expression platforms where proper batch and dataset normalization is challenging. Here we evaluate the behavior of several multiclass single sample predictors based on binary gene-pair rules (k-Top Scoring Pairs, Absolute Intrinsic Molecular Subtyping, and a new Random Forest approach) and compare them to centroids built with centered or raw expression values, with the criteria that an optimal predictor should have high accuracy, overcome differences in tumor purity, be robust across expression platforms, and provide an informative prediction output score.RESULTS: We found that gene-pair based SSPs showed excellent performance on many expression-based classification tasks. The three methods differed in prediction score output, handling of tied scores, and behavior in low purity samples. The k-Top Scoring Pairs and Random Forest approach both achieved high classification accuracy while providing an informative prediction score. Although gene-pair-based SSPs have been touted as being cross-platform compatible (through training on mixed platform data), out-of-the-box compatibility with a new dataset remains a potential issue that warrants cohort-to-cohort verification.AVAILABILITY: Our R package 'multiclassPairs' (https://cran.r-project.org/package=multiclassPairs) (https://doi.org/10.1093/bioinformatics/btab088) is freely available and enables easy training, prediction, and visualization using the gene-pair rule-based Random Forest SSP method and provides additional multiclass functionalities to the switchBox k-Top-Scoring Pairs package.SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
  •  
5.
  • Eriksson, Pontus, et al. (författare)
  • Urodrill - a novel MRI-guided endoscopic biopsy technique to sample and molecularly classify muscle-invasive bladder cancer without fractionating the specimen during transurethral resection
  • 2023
  • Ingår i: European Urology Open Science. - 2666-1691. ; 53, s. 78-82
  • Tidskriftsartikel (refereegranskat)abstract
    • The current diagnostic pathway for patients with muscle-invasive bladder cancer (MIBC), which involves with computed tomography urography, cystoscopy, and transurethral resection of the bladder (TURB) to histologically confirm MIBC, delays definitive treatment. The Vesical Imaging-Reporting and Data System (VI-RADS) has been suggested for MIBC identification using magnetic resonance imaging (MRI), but a recent randomized trial reported misclassification in one-third of patients. We investigated a new endoscopic biopsy device (Urodrill) for histological confirmation of MIBC and assessment of molecular subtype by gene expression in patients with VI-RADS 4 and 5 lesions on MRI. In ten patients, Urodrill biopsies were guided by MR images to the muscle-invasive portion of the tumor via a flexible cystoscope under general anesthesia. During the same session, conventional TURB was subsequently performed. A Urodrill sample was successfully obtained in nine of ten patients. MIBC was verified in six of nine patients, and seven of nine samples contained detrusor muscle. In seven of eight patients for whom a Urodrill biopsy sample was subjected to RNA sequencing, single-sample molecular classification according to the Lund taxonomy was feasible. No complications related to the biopsy device occurred. A randomized trial comparing this new diagnostic pathway for patients with VI-RADS 4 and 5 lesions and the current standard (TURB) is warranted. Patient summary: We report on a novel biopsy device for patients with muscle-invasive bladder cancer that facilitates histology analysis and molecular characterization of tumor samples.
  •  
6.
  • Ferreira, Alexandra Gabriela, et al. (författare)
  • Restoring tumor immunogenicity with dendritic cell reprogramming
  • 2022
  • Ingår i: Cancer immunology research. - 2326-6074. ; 10:12 suppl
  • Konferensbidrag (refereegranskat)abstract
    • Immunotherapy is revolutionizing cancer treatment, but success is limited to a fraction of patients. Tumor immunosurveillance and immunotherapy relies on presentation of tumor-associated antigens by conventional dendritic cells type 1 (cDC1). However, tumors develop mechanisms to avoid immune recognition such as downregulation of antigen presentation and exclusion of cDC1. We have previously demonstrated that enforced expression of the transcription factors PU.1, IRF8 and BATF3 (PIB) imposes the lineage conversion of fibroblasts to cDC1 by direct cell reprogramming. Here, we hypothesize that PIB reprograms cancer cells directly into functional tumor-antigen presenting cells (tumor-APCs) with enhanced immunogenicity. First, we show that enforced expression of PIB in a wide range of murine and human cancer cells from different origins is sufficient to induce surface expression of hematopoietic and DC-lineage specific markers (CD45 and Clec9a). Moreover, reprogramming restored the expression of antigen presentation complexes (MHC-I and MHC-II) and activated the expression of the co-stimulatory molecules CD40, CD80 and CD86, required for productive T cell activation. Transcriptomic analysis using mRNA-sequencing showed that PIB imposes a global cDC1 gene signature and an antigen presentation program in tumor cells as early as day 3 of reprogramming, overriding the original cancer cell program. Furthermore, Assay for Transposase-Accessible Chromatin (ATAC) sequencing analysis revealed that PIB-mediated cDC1 reprogramming elicited rapid epigenetic remodeling followed by gradual rewiring of transcriptional program and stabilization of cDC1 identity. Functionally, tumor-APCs present endogenous antigens on MHC-I, prime naïve CD8+ T and become prone to CD8+ T cell mediated killing. Tumor-APCs secrete pro-inflammatory cytokines (IL-12) and chemoattractants (CXCL10), uptake and process exogenous antigens, phagocyte dead cells, and cross-present exogenous antigens to activate naïve T-cells. In addition, reprogrammed tumor cells harboring TP53, KRAS and PTEN mutations downregulated proliferation and showed impaired tumorigenicity in vitro and in vivo. Importantly, we show that intra-tumoral injection of reprogrammed tumor-APCs elicited tumour growth control in vivo alongside increasing infiltration of CD8+ T and NK cells in B16-OVA tumors. Finally, we showed that our approach can be employed to convert primary cancer cells derived from melanoma, lung, breast, pancreatic, urothelial, and head and neck carcinomas as well as cancer associated fibroblasts. In summary, we provide evidence for the direct reprogramming of tumor cells into immunogenic cDC1-like cells, with restored antigen presentation capacity and the ability to reinstate anti-tumor immunity. Our approach elicits the immune system against cancer and counteract major tumor evasion mechanisms including tumor heterogeneity and impaired antigen presentation, laying the foundation for developing immunotherapeutic strategies based on the cellular reprogramming of human cancer cells.
  •  
7.
  • Höglund, Mattias, et al. (författare)
  • The Lund taxonomy for bladder cancer classification – from gene expression clustering to cancer cell molecular phenotypes, and back again
  • 2023
  • Ingår i: Journal of Pathology. - : Wiley. - 0022-3417 .- 1096-9896. ; 259:4, s. 369-375
  • Forskningsöversikt (refereegranskat)abstract
    • Treatment of bladder cancer patients depends on precise diagnosis. Molecular subtyping by gene expression profiling may contribute substantially to subclassification of bladder cancer. Several classification systems have been proposed. Most of these base their classification on whole biopsy features, and molecular subtypes are therefore often defined by a combination of features from the cancer cells as well as infiltrating noncancer cells. This makes the link to what is seen at the cancer cell level unclear. The aim of the Lund taxonomy (LundTax) has been to align gene expression-level classification with immunohistochemical classification to identify cancer cell phenotypes independent of infiltration and proliferation. A systematic approach was used in which gene expression clusters were validated and adjusted by immunohistochemistry using markers expressed only by the cancer cells. This review provides a rationale for defining molecular subtypes and a step-by-step description of the development of the LundTax with motivations for each modification and extension. As the cancer cell phenotype defined by gene expression profiling corresponds with the immunohistochemistry of cancer cells, the LundTax represents a harmonization of the gene expression and immunohistochemical levels. Furthermore, the classification system is independent of pathological stage and is, thus, applicable to all urothelial carcinomas. A unified classification system relevant for both the molecular biologist and pathologist will facilitate systematization of current treatment practices, as well as the development of new treatments.
  •  
8.
  • Liedberg, Fredrik, et al. (författare)
  • UROSCAN and UROSCANSEQ : a large-scale multicenter effort towards translation of molecular bladder cancer subtypes into clinical practice–from biobank to RNA-sequencing in real time
  • 2023
  • Ingår i: Scandinavian Journal of Urology. - : Medical Journals Sweden AB. - 2168-1805 .- 2168-1813. ; 57:1-6, s. 2-9
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Bladder cancer is molecularly one of the most heterogenous malignancies characterized by equally heterogenous clinical outcomes. Standard morphological assessment with pathology and added immunohistochemical analyses is unable to fully address the heterogeneity, but up to now treatment decisions have been made based on such information only. Bladder cancer molecular subtypes will likely provide means for a more personalized bladder cancer care. Methods: To facilitate further development of bladder cancer molecular subtypes and clinical translation, the UROSCAN-biobank was initiated in 2013 to achieve systematic biobanking of preoperative blood and fresh frozen tumor tissue in a population-based setting. In a second phase, we established in 2018 a parallel logistic pipeline for molecular profiling by RNA-sequencing, to develop and validate clinical implementation of molecular subtyping and actionable molecular target identification in real-time. Results: Until June 2021, 1825 individuals were included in the UROSCAN-biobank, of which 1650 (90%) had primary bladder cancer, 127 (7%) recurrent tumors, and 48 (3%) unknown tumor status. In 159 patients, multiple tumors were sampled, and metachronous tumors were collected in 83 patients. Between 2016 and 2020 the UROSCAN-biobanking included 1122/2999 (37%) of all primary bladder cancer patients in the Southern Healthcare Region. Until June 2021, the corresponding numbers subjected to RNA-sequencing and molecular subtyping was 605 (UROSCANSEQ), of which 52 (9%) samples were not sequenced due to inadequate RNA-quality (n = 47) or technical failure/lost sample (n = 5). Conclusions: The UROSCAN-biobanking and UROSCANSEQ-infrastructure for molecular subtyping by real-time RNA-sequencing represents, to our knowledge, the largest effort of evaluating population-wide molecular classification of bladder cancer.
  •  
9.
  • Marzouka, Nour Al Dain, et al. (författare)
  • Recurring urothelial carcinomas show genomic rearrangements incompatible with a direct relationship
  • 2020
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We used the fact that patients with non-muscle invasive bladder tumors show local recurrences and multiple tumors to study re-initiation of tumor growth from the same urothelium. By extensive genomic analyses we show that tumors from the same patient are clonal. We show that gross genomic chromosomal aberrations may be detected in one tumor, only to be undetected in a recurrent tumor. By analyses of incompatible changes i.e., genomic alterations that cannot be reversed, we show that almost all tumors from a single patient may show such changes, thus the tumors cannot have originated from each other. As recurring tumors share both genomic alterations and driver gene mutations, these must have been present in the urothelium in periods with no tumor growth. We present a model that includes a growing and evolving field of urothelial cells that occasionally, and locally, produce bursts of cellular growth leading to overt tumors.
  •  
10.
  • Marzouka, Nour-Al-Dain, et al. (författare)
  • The Lund Molecular Taxonomy Applied to Non-Muscle-Invasive Urothelial Carcinoma
  • 2022
  • Ingår i: Journal of Molecular Diagnostics. - : Elsevier BV. - 1525-1578. ; 24:9, s. 992-1008
  • Tidskriftsartikel (refereegranskat)abstract
    • The precise classification of tumors into relevant molecular subtypes will facilitate both future research and optimal treatment. Here, the Lund Taxonomy system for molecular classification of urothelial carcinoma was applied to two large and independent cohorts of non-muscle-invasive tumors. Of 752 tumors classified, close to 100% were of the luminal subtypes, 95% urothelial-like (Uro; UroA, UroB, or UroC) and 5% genomically unstable. The obtained subtype structure organized the tumors into groups with specific and coherent gene mutation, genomic, and clinical profiles. The intrasubtype variability in the largest group of tumors, UroA, was caused by infiltration and proliferation, not considered as cancer cell type-defining properties. Within the UroA subtype, a HOXB/late cell-cycle gene expression polarity was found, strongly associated with FGFR3, STAG2, and TP53 mutations, as well as with chromosome 9 losses. Kaplan-Meier analyses identified the genomically unstable subtype as a progression high-risk group, also valid in the subgroup of T1 tumors. Almost all progression events occurred within 12 months in this subtype. Also, a general progression gene signature was derived that identifies high- and low-risk tumors. All findings were demonstrated in two independent cohorts. The Lund Taxonomy system is applicable to both non-muscle- and muscle-invasive tumors and may be a useful biological framework for translational studies.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 21
Typ av publikation
tidskriftsartikel (16)
forskningsöversikt (4)
konferensbidrag (1)
Typ av innehåll
refereegranskat (20)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Bernardo, Carina (20)
Liedberg, Fredrik (17)
Sjödahl, Gottfrid (17)
Eriksson, Pontus (17)
Höglund, Mattias (17)
Abrahamsson, Johan (6)
visa fler...
Lövgren, Kristina (4)
Kollberg, Petter (3)
Ullén, Anders (3)
Olsson, Hans (2)
Andersson, Roland (2)
Greiff, Lennart (2)
Lindstedt, Malin (2)
Zimmermannova, Olga (2)
Axelson, Håkan (2)
Bauden, Monika (2)
Ascic, Ervin (2)
Benonisson, Hreinn (2)
Kurochkin, Ilia (2)
Gomez Jimenez, David (2)
Jelakovic, Bojan (2)
Zackrisson, Sophia (1)
Segelmark, Mårten (1)
Leffler, Hakon (1)
Kronbichler, Andreas (1)
Patschan, Oliver (1)
Bläckberg, Mats (1)
Brändstedt, Johan (1)
Simoulis, Athanasios (1)
Larsson, Christer (1)
Fiúza Rosa, Fábio (1)
Pereira, Carlos-Fili ... (1)
Pires, Cristiana (1)
Radice, Antonella (1)
Sinico, Renato Alber ... (1)
Wang, Hui (1)
Lindgren, David (1)
Watanabe, Makoto (1)
Hayashi, Norifumi (1)
Påhlsson, Peter (1)
Alves, Rita (1)
Berg, Johanna (1)
Nascimento Caiado, I ... (1)
Pereira, Filipe (1)
Svane, Inge Marie (1)
Mayer, Gert (1)
Ullen, A (1)
Edsjö, Anders (1)
Gallieni, Maurizio (1)
Ivkovic, Vanja (1)
visa färre...
Lärosäte
Lunds universitet (20)
Karolinska Institutet (4)
Linköpings universitet (2)
Göteborgs universitet (1)
Språk
Engelska (21)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (21)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy