SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bernhardt H) "

Sökning: WFRF:(Bernhardt H)

  • Resultat 1-10 av 36
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • 2019
  • Tidskriftsartikel (refereegranskat)
  •  
2.
  • Grieser, M., et al. (författare)
  • Storage ring at HIE-ISOLDE Technical design report
  • 2012
  • Ingår i: The European Physical Journal Special Topics. - : Springer Science and Business Media LLC. - 1951-6355 .- 1951-6401. ; 207:1, s. 1-117
  • Forskningsöversikt (refereegranskat)abstract
    • We propose to install a storage ring at an ISOL-type radioactive beam facility for the first time. Specifically, we intend to setup the heavy-ion, low-energy ring TSR at the HIE-ISOLDE facility in CERN, Geneva. Such a facility will provide a capability for experiments with stored secondary beams that is unique in the world. The envisaged physics programme is rich and varied, spanning from investigations of nuclear ground-state properties and reaction studies of astrophysical relevance, to investigations with highly-charged ions and pure isomeric beams. The TSR might also be employed for removal of isobaric contaminants from stored ion beams and for systematic studies within the neutrino beam programme. In addition to experiments performed using beams recirculating within the ring, cooled beams can also be extracted and exploited by external spectrometers for high-precision measurements. The existing TSR, which is presently in operation at the Max-Planck Institute for Nuclear Physics in Heidelberg, is well-suited and can be employed for this purpose. The physics cases as well as technical details of the existing ring facility and of the beam and infrastructure requirements at HIE-ISOLDE are discussed in the present technical design report.
  •  
3.
  • Kattge, Jens, et al. (författare)
  • TRY plant trait database - enhanced coverage and open access
  • 2020
  • Ingår i: Global Change Biology. - : Wiley-Blackwell. - 1354-1013 .- 1365-2486. ; 26:1, s. 119-188
  • Tidskriftsartikel (refereegranskat)abstract
    • Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.
  •  
4.
  • Staude, I. R., et al. (författare)
  • Directional turnover towards larger-ranged plants over time and across habitats
  • 2022
  • Ingår i: Ecology Letters. - : Wiley. - 1461-023X .- 1461-0248. ; 25:2, s. 466-82
  • Tidskriftsartikel (refereegranskat)abstract
    • Species turnover is ubiquitous. However, it remains unknown whether certain types of species are consistently gained or lost across different habitats. Here, we analysed the trajectories of 1827 plant species over time intervals of up to 78 years at 141 sites across mountain summits, forests, and lowland grasslands in Europe. We found, albeit with relatively small effect sizes, displacements of smaller- by larger-ranged species across habitats. Communities shifted in parallel towards more nutrient-demanding species, with species from nutrient-rich habitats having larger ranges. Because these species are typically strong competitors, declines of smaller-ranged species could reflect not only abiotic drivers of global change, but also biotic pressure from increased competition. The ubiquitous component of turnover based on species range size we found here may partially reconcile findings of no net loss in local diversity with global species loss, and link community-scale turnover to macroecological processes such as biotic homogenisation.
  •  
5.
  • Grieser, M., et al. (författare)
  • Storage ring at HIE-ISOLDE
  • 2012
  • Ingår i: European Physical Journal: Special Topics. - : Springer Science and Business Media LLC. - 1951-6401 .- 1951-6355. ; 207:1, s. 1-117
  • Tidskriftsartikel (refereegranskat)abstract
    • We propose to install a storage ring at an ISOL-type radioactive beam facility for the first time. Specifically, we intend to setup the heavy-ion, low-energy ring TSR at the HIE-ISOLDE facility in CERN, Geneva. Such a facility will provide a capability for experiments with stored secondary beams that is unique in the world. The envisaged physics programme is rich and varied, spanning from investigations of nuclear ground-state properties and reaction studies of astrophysical relevance, to investigations with highly-charged ions and pure isomeric beams. The TSR might also be employed for removal of isobaric contaminants from stored ion beams and for systematic studies within the neutrino beam programme. In addition to experiments performed using beams recirculating within the ring, cooled beams can also be extracted and exploited by external spectrometers for high-precision measurements. The existing TSR, which is presently in operation at the Max-Planck Institute for Nuclear Physics in Heidelberg, is well-suited and can be employed for this purpose. The physics cases as well as technical details of the existing ring facility and of the beam and infrastructure requirements at HIE-ISOLDE are discussed in the present technical design report.
  •  
6.
  • Lestinsky, M., et al. (författare)
  • Physics book: CRYRING@ESR
  • 2016
  • Ingår i: European Physical Journal: Special Topics. - : Springer Science and Business Media LLC. - 1951-6401 .- 1951-6355. ; 225:5, s. 797-882
  • Forskningsöversikt (refereegranskat)abstract
    • The exploration of the unique properties of stored and cooled beams of highly-charged ions as provided by heavy-ion storage rings has opened novel and fascinating research opportunities in the realm of atomic and nuclear physics research. Since the late 1980s, pioneering work has been performed at the CRYRING at Stockholm (Abrahamsson et al. 1993) and at the Test Storage Ring (TSR) at Heidelberg (Baumann et al. 1988). For the heaviest ions in the highest charge-states, a real quantum jump was achieved in the early 1990s by the commissioning of the Experimental Storage Ring (ESR) at GSI Helmholtzzentrum für Schwerionenforschung (GSI) in Darmstadt (Franzke 1987) where challenging experiments on the electron dynamics in the strong field regime as well as nuclear physics studies on exotic nuclei and at the borderline to atomic physics were performed. Meanwhile also at Lanzhou a heavy-ion storage ring has been taken in operation, exploiting the unique research opportunities in particular for medium-heavy ions and exotic nuclei (Xia et al. 2002).
  •  
7.
  •  
8.
  •  
9.
  • Staude, I. R., et al. (författare)
  • Replacements of small- by large-ranged species scale up to diversity loss in Europe's temperate forest biome
  • 2020
  • Ingår i: Nature Ecology & Evolution. - : Springer Science and Business Media LLC. - 2397-334X. ; 4, s. 802-808
  • Tidskriftsartikel (refereegranskat)abstract
    • The loss of biodiversity at the global scale has been difficult to reconcile with observations of no net loss at local scales. Vegetation surveys across European temperate forests show that this may be explained by the replacement of small-ranged species with large-ranged ones, driven by nitrogen deposition. Biodiversity time series reveal global losses and accelerated redistributions of species, but no net loss in local species richness. To better understand how these patterns are linked, we quantify how individual species trajectories scale up to diversity changes using data from 68 vegetation resurvey studies of seminatural forests in Europe. Herb-layer species with small geographic ranges are being replaced by more widely distributed species, and our results suggest that this is due less to species abundances than to species nitrogen niches. Nitrogen deposition accelerates the extinctions of small-ranged, nitrogen-efficient plants and colonization by broadly distributed, nitrogen-demanding plants (including non-natives). Despite no net change in species richness at the spatial scale of a study site, the losses of small-ranged species reduce biome-scale (gamma) diversity. These results provide one mechanism to explain the directional replacement of small-ranged species within sites and thus explain patterns of biodiversity change across spatial scales.
  •  
10.
  • Bernhardt, H., et al. (författare)
  • Debris flow recurrence periods and multi-temporal observations of colluvial fan evolution in central Spitsbergen (Svalbard)
  • 2017
  • Ingår i: Geomorphology. - : Elsevier BV. - 0169-555X. ; 296, s. 132-141
  • Tidskriftsartikel (refereegranskat)abstract
    • Fan-shaped accumulations of debris flow deposits are common landforms in polar regions such as Svalbard. Although depositional processes in these environments are of high interest to climate as well as Mars-analog research, several parameters, e.g., debris flow recurrence periods, remain poorly constrained. Here, we present an investigation based on remote sensing as well as in situ data of a similar to 0.4 km(2) large colluvial fan in Hanaskogdalen, central Spitsbergen. We analyzed high resolution satellite and aerial images covering five decades from 1961 to 2014 and correlated them with lichenometric dating as well as meteorological data. Image analyses and lichenometry deliver consistent results and show that the recurrence period of large debris flows (>= 400 m(3)) is about 5 to 10 years, with smaller flows averaging at two per year in the period from 2008 to 2013. While this is up to two orders of magnitude shorter than previous estimates for Svalbard (80 to 500 years), we found the average volume of -220 m(3) per individual flow to be similar to previous estimates for the region. Image data also reveal that an avulsion took place between 1961 and 1976, when the active part of the fan moved from its eastern to its western portion. A case study of the effects of a light rain event (similar to 5 mm/day) in the rainy summer of 2013, which triggered a large debris flow, further shows that even light precipitation can trigger major flows. This is made possible by multiple light rain events or gradual snow melt pre-saturating the permafrost ground and has to be taken into account when predicting the likelihood of potentially hazardous mass wasting in polar regions. Furthermore, our findings imply a current net deposition rate on the colluvial fan of similar to 480 m(3)/year, which is slightly less than the integrated net deposition rate of 576 to 720 m(3)/year resulting from the current fan volume divided by the 12,500 to 10,000 years since the onset of fan build-up after the area's deglaciation. However, the actual deposition rate, which should increase in a warmer climate including more rain, cannot be constrained due to effects like ongoing toe-cutting of the debris fan and some flows only causing internal redistributions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 36
Typ av publikation
tidskriftsartikel (30)
forskningsöversikt (3)
konferensbidrag (2)
rapport (1)
Typ av innehåll
refereegranskat (33)
övrigt vetenskapligt/konstnärligt (2)
populärvet., debatt m.m. (1)
Författare/redaktör
Schneider, D. (3)
Heil, M (3)
Reifarth, R (3)
Ahlman, Håkan, 1947 (3)
Nilsson, Ola, 1957 (3)
Forssell-Aronsson, E ... (3)
visa fler...
Kölby, Lars, 1963 (3)
Kiselev, O. (3)
Björkman, Anne, 1981 (3)
Fischer, D. (3)
Sonnabend, K. (3)
Zuber, K. (2)
Rubio, B (2)
Wolf, A. (2)
Kadi, Y (2)
Matthes, R. (2)
Nilsson, Thomas, 196 ... (2)
Wildner, E. (2)
Kalantar-Nayestanaki ... (2)
Zhang, Y. H. (2)
Aumann, T (2)
Simon, H (2)
Smith, J. (2)
Brunet, Jörg (2)
Jenkins, D. (2)
Simpson, J (2)
Klingspor, L (2)
Greenlees, P. (2)
Tu, X. L. (2)
Müller, C. (2)
Gerl, J. (2)
Labiche, M. (2)
Pietralla, N. (2)
Podolyak, Z. (2)
Reiter, P. (2)
Walker, P.M. (2)
Schuch, Reinhold (2)
Geissel, H. (2)
Nociforo, C. (2)
Riisager, K. (2)
Woods, P. J. (2)
Fraile, L. (2)
Lindblad, J (2)
Mukha, I. (2)
Scheidenberger, C. (2)
Dillmann, I. (2)
Estradé, A. (2)
Kurcewicz, J. (2)
Sun, B (2)
Barzakh, A. (2)
visa färre...
Lärosäte
Göteborgs universitet (17)
Karolinska Institutet (11)
Stockholms universitet (5)
Lunds universitet (3)
Chalmers tekniska högskola (3)
Sveriges Lantbruksuniversitet (3)
visa fler...
Uppsala universitet (2)
Örebro universitet (2)
Kungliga Tekniska Högskolan (1)
Högskolan i Halmstad (1)
Linköpings universitet (1)
Karlstads universitet (1)
Högskolan Dalarna (1)
visa färre...
Språk
Engelska (36)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (15)
Naturvetenskap (8)
Teknik (1)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy