SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Berrojalbiz Naiara) "

Sökning: WFRF:(Berrojalbiz Naiara)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gonzalez-Gaya, Belen, et al. (författare)
  • Biodegradation as an important sink of aromatic hydrocarbons in the oceans
  • 2019
  • Ingår i: Nature Geoscience. - : Nature Publishing Group. - 1752-0894 .- 1752-0908. ; 12:2, s. 119-125+2
  • Tidskriftsartikel (refereegranskat)abstract
    • Atmospheric deposition of semivolatile aromatic hydrocarbons accounts for an important input of organic matter to the surface ocean. Nevertheless, the biogeochemical cycling and sinks of semivolatile aromatic hydrocarbons in the ocean remain largely uncharacterized. Here we present measurements of 64 polycyclic aromatic hydrocarbons in plankton and seawater from the Atlantic, Pacific, Indian and Southern Oceans, as well an assessment of their microbial degradation genes. Concentrations of the more hydrophobic compounds decreased when the plankton biomass was higher, consistent with the relevance of the biological pump. The mass balance for the global oceans showed that the settling fluxes of aromatic hydrocarbons in the water column were two orders of magnitude lower than the atmospheric deposition fluxes. This imbalance was high for low molecular weight hydrocarbons, such as phenanthrene and methylphenanthrenes, highly abundant in the dissolved phase. Parent polycyclic aromatic hydrocarbons were depleted to a higher degree than alkylated polycyclic aromatic hydrocarbons, and the degradation genes for polycyclic aromatic hydrocarbons were found to be ubiquitous in oceanic metagenomes. These observations point to a key role of biodegradation in depleting the bioavailable dissolved hydrocarbons and to the microbial degradation of atmospheric inputs of organic matter as a relevant process for the marine carbon cycle.
  •  
2.
  • Martinez-Varela, Alicia, et al. (författare)
  • Metatranscriptomic responses and microbial degradation of background polycyclic aromatic hydrocarbons in the coastal Mediterranean and Antarctica
  • 2023
  • Ingår i: Environmental Science and Pollution Research. - : Springer. - 0944-1344 .- 1614-7499. ; 30:57, s. 119988-119999
  • Tidskriftsartikel (refereegranskat)abstract
    • Although microbial degradation is a key sink of polycyclic aromatic hydrocarbons (PAH) in surface seawaters, there is a dearth of field-based evidences of regional divergences in biodegradation and the effects of PAHs on site-specific microbial communities. We compared the magnitude of PAH degradation and its impacts in short-term incubations of coastal Mediterranean and the Maritime Antarctica microbiomes with environmentally relevant concentrations of PAHs. Mediterranean bacteria readily degraded the less hydrophobic PAHs, with rates averaging 4.72 +/- 0.5 ng L h-1. Metatranscriptomic responses showed significant enrichments of genes associated to horizontal gene transfer, stress response, and PAH degradation, mainly harbored by Alphaproteobacteria. Community composition changed and increased relative abundances of Bacteroidota and Flavobacteriales. In Antarctic waters, there was no degradation of PAH, and minimal metatranscriptome responses were observed. These results provide evidence for factors such as geographic region, community composition, and pre-exposure history to predict PAH biodegradation in seawater.
  •  
3.
  • Nybom, Inna, et al. (författare)
  • Effects of Organic Carbon Origin on Hydrophobic Organic Contaminant Fate in the Baltic Sea
  • 2021
  • Ingår i: Environmental Science and Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 55:19, s. 13061-13071
  • Tidskriftsartikel (refereegranskat)abstract
    • The transport and fate of hydrophobic organic contaminants (HOCs) in the marine environment are closely linked to organic carbon (OC) cycling processes. We investigated the influence of marine versus terrestrial OC origin on HOC fluxes at two Baltic Sea coastal sites with different relative contributions of terrestrial and marine OC. Stronger sorption of the more than four-ring polycyclic aromatic hydrocarbons and penta-heptachlorinated polychlorinated biphenyls (PCBs) was observed at the marine OC-dominated site. The site-specific partition coefficients between sediment OC and water were 0.2–1.0 log units higher at the marine OC site, with the freely dissolved concentrations in the sediment pore-water 2–10 times lower, when compared with the terrestrial OC site. The stronger sorption at the site characterized with marine OC was most evident for the most hydrophobic PCBs, leading to reduced fluxes of these compounds from sediment to water. According to these results, future changes in OC cycling because of climate change, leading to increased input of terrestrial OC to the marine system, can have consequences for the availability and mobility of HOCs in aquatic systems and thereby also for the capacity of sediments to store HOCs. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy