SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Berry Bruce W. 1974 ) "

Sökning: WFRF:(Berry Bruce W. 1974 )

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Berry, Bruce W., 1974-, et al. (författare)
  • Environmental modulation of protein cation-pi interactions
  • 2007
  • Ingår i: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 0002-7863 .- 1520-5126. ; 129:17, s. 5308+-
  • Tidskriftsartikel (refereegranskat)abstract
    • Protein cation-pi interactions are frequently found near the protein surface with their interacting residues partly solvent exposed. The structurally characterized alpha W-3 model protein contains the W32/K36 cation-pi interaction which has properties similar to those of naturally occurring protein cation-pi interactions. alpha W-3 was studied with the following results: Cation-pi interactions formed by a buried tryptophan and a partly solvated lysine, arginine, or histidine range from -0.8 to -0.5 kcal mol(-1) and rank as: W32/K36 approximate to W32/R36 > W32/H36. The W32/K36 pair in alpha W-3 represents the first W/K cation-pi interaction for which both the structure and the bond energy have been experimentally determined. Upon increasing the solvent exposure of the cation-pi pair, the W/K interaction energy drops from -0.73 to -0.06 and +0.15 kcal mol(-1). These results suggest that solvent exposure can tune the interaction energy between a tryptophan and a lysine by at least 0.9 kcal mol(-1).
  •  
2.
  • Berry, Bruce W., 1974-, et al. (författare)
  • Reversible voltammograms and a Pourbaix diagram for a protein tyrosine radical
  • 2012
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 109:25, s. 9739-9743
  • Tidskriftsartikel (refereegranskat)abstract
    • Reversible voltammograms and a voltammetry half-wave potential versus solution pH diagram are described for a protein tyrosine radical. This work required a de novo designed tyrosine-radical protein displaying a unique combination of structural and electrochemical properties. The alpha Y-3 protein is structurally stable across a broad pH range. The redox-active tyrosine Y32 resides in a desolvated and well-structured environment. Y32 gives rise to reversible square-wave and differential pulse voltammograms at alkaline pH. The formal potential of the Y32-O-center dot/Y32-OH redox couple is determined to 918 +/- 2 mV versus the normal hydrogen electrode at pH 8.40 +/- 0.01. The observation that Y32 gives rise to fully reversible voltammograms translates into an estimated lifetime of >= 30 ms for the Y32-O-center dot state. This illustrates the range of tyrosine-radical stabilization that a structured protein can offer. Y32 gives rise to quasireversible square-wave and differential pulse voltammograms at acidic pH. These voltammograms represent the Y32 species at the upper edge of the quasirevesible range. The square-wave net potential closely approximates the formal potential of the Y32-O center dot/Y32-OH redox couple to 1,070 +/- 1 mV versus the normal hydrogen electrode at pH 5.52 +/- 0.01. The differential pulse voltammetry half-wave potential of the Y32-O-center dot/Y32-OH redox pair is measured between pH 4.7 and 9.0. These results are described and analyzed.
  •  
3.
  • Berry, Bruce W., 1974- (författare)
  • Using de novo design proteins to explore tyrosine radicals and cation-π interactions
  • 2014
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Redox cofactors and amino-acid free radicals play important roles in biology. Although many of the same cofactors and amino acids that form these radicals are found across a broad range of biological systems, identical cofactors can have different reduction potentials. The local environment plays a role in defining these redox potentials. An understanding of this local-environment effect can shed more light on how redox chemistry works in nature. Our laboratory has developed a library of model proteins that are well suited to study amino-acid radicals. a3X is a de novo designed protein that is composed of 67 residues. It forms a three-helix bundle connected by two glycine loops. The radical site is located at position 32 on the central a-helix. The a3X protein is designed to be well-folded and thermodynamically stable across a broad pH range. Paper 1 describes the structural and electrochemical characterization of a3Y, a tyrosine variant of a3X. We were able to obtain a unique Faradaic response from Y32 at both low and high pH, using differential pulse voltammetry. In addition, we successfully redesigned α3Y by introducing a histidine in close proximity to Y32, creating a tyrosine/histidine pair. Our goal in creating this pair was to study proton-coupled electron transfer (PCET) in a well-structured and solvent-sequestered protein environment.  In paper 2 we illustrated the redox reversibility of Y32 and produced the first ever Pourbaix diagram for a tyrosine radical in a protein. The formal potential of the Y32-OŸ/Y32-OH redox couple was determined to be 918 ± 2 mV vs. the normal hydrogen electrode (NHE) at pH 8.40.  While at pH 5.52, the formal potential of the Y32-OŸ/Y32-OH redox couple was recorded at 1.07 V. Papers 3 and 4 utilize a3W to study cation-π interactions. In paper 3, we showed how solvation can affect the strength of these interactions by -0.9 kcal/mol. In Paper 4, we were able to monitor the disruption of the cation-π interaction with the use of high-pressure fluorescence and were able to calculate the interaction energy for a solvent exposed cation-π. The aim of the work described in this thesis was to use model proteins to study tyrosine radicals to gain a broader perspective and better understanding of the versatility of biological electron transfer and to measure cation-π interactions and how they behave in different environments.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy