SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bersten M. C.) "

Sökning: WFRF:(Bersten M. C.)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Gutierrez, C. P., et al. (författare)
  • DES16C3cje : A low-luminosity, long-lived supernova
  • 2020
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 496:1, s. 95-110
  • Tidskriftsartikel (refereegranskat)abstract
    • We present DES16C3cje, a low-luminosity, long-lived type II supernova (SN II) at redshift 0.0618, detected by the Dark Energy Survey (DES). DES16C3cje is a unique SN. The spectra are characterized by extremely narrow photospheric lines corresponding to very low expansion velocities of less than or similar to 1500 km s(-1), and the light curve shows an initial peak that fades after 50 d before slowly rebrightening over a further 100 d to reach an absolute brightness of M-r similar to 15.5 mag. The decline rate of the late-time light curve is then slower than that expected from the powering by radioactive decay of Co-56, but is comparable to that expected from accretion power. Comparing the bolometric light curve with hydrodynamical models, we find that DES16C3cje can be explained by either (i) a low explosion energy (0.11 foe) and relatively large Ni-56 production of 0.075 M-circle dot from an similar to 15 M-circle dot red supergiant progenitor typical of other SNe II, or (ii) a relatively compact similar to 40 M-circle dot star, explosion energy of 1 foe, and 0.08 M-circle dot of Ni-56. Both scenarios require additional energy input to explain the late-time light curve, which is consistent with fallback accretion at a rate of similar to 0.5 x 10(-)(8) M-circle dot s(-1).
  •  
3.
  • Davis, S., et al. (författare)
  • SN 2013ai : A Link between Hydrogen-rich and Hydrogen-poor Core-collapse Supernovae
  • 2021
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 909:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a study of the optical and near-infrared (NIR) spectra of SN 2013ai along with its light curves. These data range from discovery until 380 days after explosion. SN 2013ai is a fast declining Type II supernova (SN II) with an unusually long rise time, 18.9 2.7 days in the V-band, and a bright V-band peak absolute magnitude of -18.7 0.06 mag. The spectra are dominated by hydrogen features in the optical and NIR. The spectral features of SN 2013ai are unique in their expansion velocities, which, when compared to large samples of SNe II, are more than 1,000 km s(-1) faster at 50 days past explosion. In addition, the long rise time of the light curve more closely resembles SNe IIb rather than SNe II. If SN 2013ai is coeval with a nearby compact cluster, we infer a progenitor zero-age main-sequence mass of similar to 17 M. After performing light-curve modeling, we find that SN 2013ai could be the result of the explosion of a star with little hydrogen mass, a large amount of synthesized Ni-56, 0.3-0.4 M, and an explosion energy of 2.5-3.0 x 10(51) erg. The density structure and expansion velocities of SN 2013ai are similar to those of the prototypical SN IIb, SN 1993J. However, SN 2013ai shows no strong helium features in the optical, likely due to the presence of a dense core that prevents the majority of gamma-rays from escaping to excite helium. Our analysis suggests that SN 2013ai could be a link between SNe II and stripped-envelope SNe.
  •  
4.
  • Stritzinger, M. D., et al. (författare)
  • The Carnegie Supernova Project I : Methods to estimate host-galaxy reddening of stripped-envelope supernovae
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 609
  • Tidskriftsartikel (refereegranskat)abstract
    • We aim to improve upon contemporary methods to estimate host-galaxy reddening of stripped-envelope (SE) supernovae (SNe). To this end the Carnegie Supernova Project (CSP-I) SE SN photometry data release, consisting of nearly three dozen objects, is used to identify a minimally reddened sub-sample for each traditionally defined spectroscopic sub-type (i.e., SNe IIb, SNe Ib, SNe Ic). Inspection of the optical and near-infrared (NIR) colors and color evolution of the minimally reddened sub-samples reveals a high degree of homogeneity, particularly between 0 d to +20 d relative to B-band maximum. This motivated the construction of intrinsic color-curve templates, which when compared to the colors of reddened SE SNe, yields an entire suite of optical and NIR color excess measurements. Comparison of optical/optical vs. optical/NIR color excess measurements indicates the majority of the CSP-I SE SNe suffer relatively low amounts of reddening (i.e., E(B - V)(host) < 0.20 mag) and we find evidence for different R-host(V) values among di ff erent SE SN. Fitting the color excess measurements of the seven most reddened (i. e., E(B - V)(host) > 0.20 mag) objects with the Fitzpatrick (1999, PASP, 111, 63) reddening law model provides robust estimates of the host visual-extinction A(host)(V) and R-host(V). In the case of the SE SNe with relatively low amounts of reddening, a preferred value of R-host(V) is adopted for each sub-type, resulting in estimates of A(V)(host) through Fitzpatrick (1999) reddening law model fits to the observed color excess measurements. Our analysis suggests SE SNe reside in galaxies characterized by a range of dust properties. We also find evidence that SNe Ic are more likely to occur in regions characterized by larger A(V)(host) values compared to SNe IIb/Ib and they also tend to suffer more extinction. The later finding is consistent with work in the literature suggesting SNe Ic tend to occur in regions of on-going star formation.
  •  
5.
  • Taddia, Francesco, et al. (författare)
  • The Carnegie Supernova Project I Analysis of stripped-envelope supernova light curves
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 609
  • Tidskriftsartikel (refereegranskat)abstract
    • Stripped-envelope (SE) supernovae (SNe) include H-poor (Type IIb), H-free (Type Ib), and He-free (Type Ic) events thought to be associated with the deaths of massive stars. The exact nature of their progenitors is a matter of debate with several lines of evidence pointing towards intermediate mass (M-init < 20 M-circle dot) stars in binary systems, while in other cases they may be linked to single massiveWolf-Rayet stars. Here we present the analysis of the light curves of 34 SE SNe published by the Carnegie Supernova Project (CSP-I) that are unparalleled in terms of photometric accuracy and wavelength range. Light-curve parameters are estimated through the fits of an analytical function and trends are searched for among the resulting fit parameters. Detailed inspection of the dataset suggests a tentative correlation between the peak absolute B-band magnitude and Delta m(15)(B), while the post maximum light curves reveals a correlation between the late-time linear slope and Delta m(15). Making use of the full set of optical and near-IR photometry, combined with robust host-galaxy extinction corrections, comprehensive bolometric light curves are constructed and compared to both analytic and hydrodynamical models. This analysis finds consistent results among the two different modeling techniques and from the hydrodynamical models we obtained ejecta masses of 1.1-6.2 M-circle dot, Ni-56 masses of 0.03-0.35 M fi, and explosion energies (excluding two SNe Ic-BL) of 0.25-3.0 x 10(51) erg. Our analysis indicates that adopting kappa = 0.07 cm(2) g(-1) as the mean opacity serves to be a suitable assumption when comparing Arnett-model results to those obtained from hydrodynamical calculations. We also find that adopting He I and O I line velocities to infer the expansion velocity in He-rich and He-poor SNe, respectively, provides ejecta masses relatively similar to those obtained by using the Fe II line velocities, although the use of Fe II as a diagnostic does imply higher explosion energies. The inferred range of ejecta masses are compatible with intermediate mass (M-ZAMS <= 20 M-circle dot) progenitor stars in binary systems for the majority of SE SNe. Furthermore, our hydrodynamical modeling of the bolometric light curves suggests a significant fraction of the sample may have experienced significant mixing of 56Ni, particularly in the case of SNe Ic.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy