SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bersten Melina C.) "

Sökning: WFRF:(Bersten Melina C.)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bersten, Melina C., et al. (författare)
  • THE TYPE IIb SUPERNOVA 2011dh FROM A SUPERGIANT PROGENITOR
  • 2012
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 757:1
  • Tidskriftsartikel (refereegranskat)abstract
    • A set of hydrodynamical models based on stellar evolutionary progenitors is used to study the nature of SN 2011dh. Our modeling suggests that a large progenitor star-with R similar to 200 R-circle dot-is needed to reproduce the early light curve (LC) of SN 2011dh. This is consistent with the suggestion that the yellow super-giant star detected at the location of the supernova (SN) in deep pre-explosion images is the progenitor star. From the main peak of the bolometric LC and expansion velocities, we constrain the mass of the ejecta to be approximate to 2 M-circle dot, the explosion energy to be E = (6-10) x 10(50) erg, and the Ni-56 mass to be approximately 0.06 M-circle dot. The progenitor star was composed of a helium core of 3-4 M-circle dot and a thin hydrogen-rich envelope of approximate to 0.1M(circle dot) with a main-sequence mass estimated to be in the range of 12-15 M-circle dot. Our models rule out progenitors with helium-core masses larger than 8 M-circle dot, which correspond to M-ZAMS greater than or similar to 25M(circle dot). This suggests that a single star evolutionary scenario for SN 2011dh is unlikely.
  •  
2.
  • Kuncarayakti, Hanindyo, et al. (författare)
  • Direct Evidence of Two-component Ejecta in Supernova 2016gkg from Nebular Spectroscopy
  • 2020
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 902:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Spectral observations of the type-IIb supernova (SN) 2016gkg at 300-800 days are reported. The spectra show nebular characteristics, revealing emission from the progenitor star's metal-rich core and providing clues to the kinematics and physical conditions of the explosion. The nebular spectra are dominated by emission lines of [O i] lambda lambda 6300, 6364 and [Ca ii] lambda lambda 7292, 7324. Other notable, albeit weaker, emission lines include Mg I] lambda 4571, [Fe ii] lambda 7155, O I lambda 7774, Ca II triplet, and a broad, boxy feature at the location of H alpha. Unlike in other stripped-envelope SNe, the [O i] doublet is clearly resolved due to the presence of strong narrow components. The doublet shows an unprecedented emission line profile consisting of at least three components for each [O i]lambda 6300, 6364 line: a broad component (width similar to 2000 km s(-1)), and a pair of narrow blue and red components (width similar to 300 km s(-1)) mirrored against the rest velocity. The narrow component appears also in other lines, and is conspicuous in [O i]. This indicates the presence of multiple distinct kinematic components of material at low and high velocities. The low-velocity components are likely to be produced by a dense, slow-moving emitting region near the center, while the broad components are emitted over a larger volume. These observations suggest an asymmetric explosion, supporting the idea of two-component ejecta that influence the resulting late-time spectra and light curves. SN 2016gkg thus presents striking evidence for significant asymmetry in a standard-energy SN explosion. The presence of material at low velocity, which is not predicted in 1D simulations, emphasizes the importance of multidimensional explosion modeling of SNe.
  •  
3.
  • Kuncarayakti, Hanindyo, et al. (författare)
  • SN 2017dio : A Type-Ic Supernova Exploding in a Hydrogen-rich Circumstellar Medium
  • 2018
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8205 .- 2041-8213. ; 854:1
  • Tidskriftsartikel (refereegranskat)abstract
    • SN 2017dio shows both spectral characteristics of a type-Ic supernova (SN) and signs of a hydrogen-rich circumstellar medium (CSM). Prominent, narrow emission lines of H and He are superposed on the continuum. Subsequent evolution revealed that the SN ejecta are interacting with the CSM. The initial SN Ic identification was confirmed by removing the CSM interaction component from the spectrum and comparing with known SNe Ic and, reversely, adding a CSM interaction component to the spectra of known SNe Ic and comparing them to SN 2017dio. Excellent agreement was obtained with both procedures, reinforcing the SN Ic classification. The light curve constrains the pre-interaction SN Ic peak absolute magnitude to be around M-g = -17.6 mag. No evidence of significant extinction is found, ruling out a brighter luminosity required by an SN Ia classification. These pieces of evidence support the view that SN 2017dio is an SN Ic, and therefore the first firm case of an SN Ic with signatures of hydrogen-rich CSM in the early spectrum. The CSM is unlikely to have been shaped by steady-state stellar winds. The mass loss of the progenitor star must have been intense, M similar to 0.02 (epsilon(H alpha)/0.01)(-1) (nu(wind)/500 km s(-1)) (nu(shock)/10,000 km s(-1))M--3(circle dot) yr(-1), peaking at a few decades before the SN. Such a high mass-loss rate might have been experienced by the progenitor through eruptions or binary stripping.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy