SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bertelli S.) "

Sökning: WFRF:(Bertelli S.)

  • Resultat 1-10 av 18
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Glasbey, JC, et al. (författare)
  • 2021
  • swepub:Mat__t
  •  
2.
  •  
3.
  • Fenstermacher, M.E., et al. (författare)
  • DIII-D research advancing the physics basis for optimizing the tokamak approach to fusion energy
  • 2022
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 62:4
  • Tidskriftsartikel (refereegranskat)abstract
    • DIII-D physics research addresses critical challenges for the operation of ITER and the next generation of fusion energy devices. This is done through a focus on innovations to provide solutions for high performance long pulse operation, coupled with fundamental plasma physics understanding and model validation, to drive scenario development by integrating high performance core and boundary plasmas. Substantial increases in off-axis current drive efficiency from an innovative top launch system for EC power, and in pressure broadening for Alfven eigenmode control from a co-/counter-I p steerable off-axis neutral beam, all improve the prospects for optimization of future long pulse/steady state high performance tokamak operation. Fundamental studies into the modes that drive the evolution of the pedestal pressure profile and electron vs ion heat flux validate predictive models of pedestal recovery after ELMs. Understanding the physics mechanisms of ELM control and density pumpout by 3D magnetic perturbation fields leads to confident predictions for ITER and future devices. Validated modeling of high-Z shattered pellet injection for disruption mitigation, runaway electron dissipation, and techniques for disruption prediction and avoidance including machine learning, give confidence in handling disruptivity for future devices. For the non-nuclear phase of ITER, two actuators are identified to lower the L-H threshold power in hydrogen plasmas. With this physics understanding and suite of capabilities, a high poloidal beta optimized-core scenario with an internal transport barrier that projects nearly to Q = 10 in ITER at ∼8 MA was coupled to a detached divertor, and a near super H-mode optimized-pedestal scenario with co-I p beam injection was coupled to a radiative divertor. The hybrid core scenario was achieved directly, without the need for anomalous current diffusion, using off-axis current drive actuators. Also, a controller to assess proximity to stability limits and regulate β N in the ITER baseline scenario, based on plasma response to probing 3D fields, was demonstrated. Finally, innovative tokamak operation using a negative triangularity shape showed many attractive features for future pilot plant operation.
  •  
4.
  •  
5.
  •  
6.
  • Augustyniak, W., et al. (författare)
  • Polarization of a stored beam by spin-filtering
  • 2012
  • Ingår i: Physics Letters B. - : Elsevier. - 0370-2693 .- 1873-2445. ; 718:1, s. 64-69
  • Tidskriftsartikel (refereegranskat)abstract
    • The PAX Collaboration has successfully performed a spin-filtering experiment with protons at the COSY-ring. The measurement allowed the determination of the spin-dependent polarizing cross section, that compares well with the theoretical prediction from the nucleon-nucleon potential. The test confirms that spin-filtering can be adopted as a method to polarize a stored beam and that the present interpretation of the mechanism in terms of the proton-proton interaction is correct. The outcome of the experiment is of utmost importance in view of the possible application of the method to polarize a beam of stored antiprotons.
  •  
7.
  • Oellers, D., et al. (författare)
  • New experimental upper limit of the electron-proton spin-flip cross-section
  • 2014
  • Ingår i: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier BV. - 0168-9002 .- 1872-9576. ; 759, s. 6-9
  • Tidskriftsartikel (refereegranskat)abstract
    • In a previous publication, measurements of the depolarization of a stored proton beam by interaction with a co-propagating unpolarized electron beam at low relative energy have been presented and an upper limit of about 3 x 10(7) b for the electron-proton spin flip cross-section was determined. A refined analysis presented in this paper reduces the previous upper limit by a factor of three by the introduction of a new procedure that, also makes use of non-identified particles.
  •  
8.
  • Oellers, D., et al. (författare)
  • Polarizing a stored proton beam by spin flip?
  • 2009
  • Ingår i: Physics Letters B. - : Elsevier. - 0370-2693 .- 1873-2445. ; 674:4-5, s. 269-275
  • Tidskriftsartikel (refereegranskat)abstract
    • We discuss polarizing a proton beam in a storage ring, either by selective removal or by spin flip of the stored ions. Prompted by recent, conflicting calculations, we have carried out a measurement of the spin-flip cross section in low-energy electron–proton scattering. The experiment uses the cooling electron beam at COSY as an electron target. The measured cross sections are too small for making spin flip a viable tool in polarizing a stored beam. This invalidates a recent proposal to use co-moving polarized positrons to polarize a stored antiproton beam.
  •  
9.
  • Bertelli Motta, C., et al. (författare)
  • The Gaia-ESO Survey : evidence of atomic diffusion in M67?
  • 2018
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press. - 0035-8711 .- 1365-2966. ; 478:1, s. 425-438
  • Tidskriftsartikel (refereegranskat)abstract
    • Investigating the chemical homogeneity of stars born from the same molecular cloud at virtually the same time is very important for our understanding of the chemical enrichment of the interstellar medium and with it the chemical evolution of the Galaxy. One major cause of inhomogeneities in the abundances of open clusters is stellar evolution of the cluster members. In this work, we investigate variations in the surface chemical composition of member stars of the old open cluster M67 as a possible consequence of atomic diffusion effects taking place during the main-sequence phase. The abundances used are obtained from high-resolution UVES/FLAMES spectra within the framework of the Gaia-ESO Survey. We find that the surface abundances of stars on the main sequence decrease with increasing mass reaching a minimum at the turn-off. After deepening of the convective envelope in subgiant branch stars, the initial surface abundances are restored. We found the measured abundances to be consistent with the predictions of stellar evolutionary models for a cluster with the age and metallicity of M67. Our findings indicate that atomic diffusion poses a non-negligible constraint on the achievable precision of chemical tagging methods.
  •  
10.
  • Eversmann, D., et al. (författare)
  • New Method for a Continuous Determination of the Spin Tune in Storage Rings and Implications for Precision Experiments
  • 2015
  • Ingår i: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 115:9
  • Tidskriftsartikel (refereegranskat)abstract
    • A new method to determine the spin tune is described and tested. In an ideal planar magnetic ring, the spin tune-defined as the number of spin precessions per turn-is given by nu(s) = gamma G (gamma is the Lorentz factor, G the gyromagnetic anomaly). At 970 MeV/c, the deuteron spins coherently process at a frequency of approximate to 120 kHz in the Cooler Synchrotron COSY. The spin tune is deduced from the up-down asymmetry of deuteron-carbon scattering. In a time interval of 2.6 s, the spin tune was determined with a precision of the order 10(-8), and to 1 x 10(-10) for a continuous 100 s accelerator cycle. This renders the presented method a new precision tool for accelerator physics; controlling the spin motion of particles to high precision is mandatory, in particular, for the measurement of electric dipole moments of charged particles in a storage ring.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 18

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy