SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bertone Gianfranco) "

Sökning: WFRF:(Bertone Gianfranco)

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Arun, K. G., et al. (författare)
  • New horizons for fundamental physics with LISA
  • 2022
  • Ingår i: Living Reviews in Relativity. - : Springer Science and Business Media LLC. - 1433-8351 .- 2367-3613. ; 25:1
  • Forskningsöversikt (refereegranskat)abstract
    • The Laser Interferometer Space Antenna (LISA) has the potential to reveal wonders about the fundamental theory of nature at play in the extreme gravity regime, where the gravitational interaction is both strong and dynamical. In this white paper, the Fundamental Physics Working Group of the LISA Consortium summarizes the current topics in fundamental physics where LISA observations of gravitational waves can be expected to provide key input. We provide the briefest of reviews to then delineate avenues for future research directions and to discuss connections between this working group, other working groups and the consortium work package teams. These connections must be developed for LISA to live up to its science potential in these areas.
  •  
2.
  • Barack, Leor, et al. (författare)
  • Black holes, gravitational waves and fundamental physics : a roadmap
  • 2019
  • Ingår i: Classical and quantum gravity. - : IOP Publishing. - 0264-9381 .- 1361-6382. ; 36:14
  • Forskningsöversikt (refereegranskat)abstract
    • The grand challenges of contemporary fundamental physics dark matter, dark energy, vacuum energy, inflation and early universe cosmology, singularities and the hierarchy problem all involve gravity as a key component. And of all gravitational phenomena, black holes stand out in their elegant simplicity, while harbouring some of the most remarkable predictions of General Relativity: event horizons, singularities and ergoregions. The hitherto invisible landscape of the gravitational Universe is being unveiled before our eyes: the historical direct detection of gravitational waves by the LIGO-Virgo collaboration marks the dawn of a new era of scientific exploration. Gravitational-wave astronomy will allow us to test models of black hole formation, growth and evolution, as well as models of gravitational-wave generation and propagation. It will provide evidence for event horizons and ergoregions, test the theory of General Relativity itself, and may reveal the existence of new fundamental fields. The synthesis of these results has the potential to radically reshape our understanding of the cosmos and of the laws of Nature. The purpose of this work is to present a concise, yet comprehensive overview of the state of the art in the relevant fields of research, summarize important open problems, and lay out a roadmap for future progress. This write-up is an initiative taken within the framework of the European Action on 'Black holes, Gravitational waves and Fundamental Physics'.
  •  
3.
  • Bergström, Lars, 1952-, et al. (författare)
  • Gamma-ray and Radio Constraints of High Positron Rate Dark Matter Models Annihilating into New Light Particles
  • 2009
  • Ingår i: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 79:8, s. 081303-
  • Tidskriftsartikel (refereegranskat)abstract
    • The possibility of explaining the positron and electron excess recently found by the PAMELA and ATIC collaborations in terms of dark matter (DM) annihilation has attracted considerable attention. Models surviving bounds from, e.g, antiproton production generally fall into two classes, where either DM annihilates directly with a large branching fraction into light leptons, or, as in the recent models of Arkani-Hamed et al., and of Nomura and Thaler, the annihilation gives low-mass (pseudo)scalars or vectors $\phi$ which then decay into $\mu^+\mu^-$ or $e^+e^-$. While the constraints on the first kind of models have recently been treated by several authors, we study here specifically models of the second type which rely on an efficient Sommerfeld enhancement in order to obtain the necessary boost in the annihilation cross section. We compute the photon flux generated by QED radiative corrections to the decay of $\phi$ and show that this indeed gives a rather spectacular broad peak in $E^2d\sigma/dE$, that for these extreme values of the cross section violate gamma-ray observations of the Galactic center for DM density profiles steeper than that of Navarro, Frenk and White. The most stringent constraint comes from the comparison of the predicted synchrotron radiation in the central part of the Galaxy with radio observations of Sgr A*. For the most commonly adopted DM profiles, the models that provide a good fit to the PAMELA and ATIC data are ruled out, unless there are physical processes that boost the local anti-matter fluxes more than one order of magnitude, while not affecting the gamma-ray or radio fluxes.
  •  
4.
  • Bergström, Lars, et al. (författare)
  • Investigating gamma ray lines from dark matter with future observatories
  • 2012
  • Ingår i: Journal of Cosmology and Astroparticle Physics. - : IOP Publishing. - 1475-7516. ; :11, s. 025-
  • Tidskriftsartikel (refereegranskat)abstract
    • We study the prospects for studying line features in gamma-ray spectra with upcoming gamma-ray experiments, such as HESS-II, the Cherenkov Telescope Array (CTA), and the GAMMA-400 satellite. As an example we use the narrow feature at 130 GeV seen in public data from the Fermi-LAT satellite. We found that all three experiments should be able to confidently confirm or rule out the presence of this 130 GeV feature. If it is real, it should be confirmed with a confidence level higher than 5 sigma. Assuming it to be a spectral signature of dark matter origin, GAMMA-400, thanks to a projected energy resolution of about 1.5 % at 100 GeV, should also be able to resolve both the gamma gamma line and a corresponding Z gamma or H gamma feature, if the corresponding branching ratio is comparable to that into two photons. It will also allow to distinguish between a gamma-ray line and the similar feature resulting from internal bremsstrahlung photons.
  •  
5.
  •  
6.
  • Ibarra, Alejandro, et al. (författare)
  • On the sensitivity of CTA to gamma-ray boxes from multi-TeV dark matter
  • 2015
  • Ingår i: Journal of Cosmology and Astroparticle Physics. - : IOP Publishing. - 1475-7516. ; :9
  • Tidskriftsartikel (refereegranskat)abstract
    • Collider, direct and indirect searches for dark matter have typically little or no sensitivity to weakly interacting massive particles (WIMPs) with masses above a few TeV. This rather unexplored regime can however be probed through the search for distinctive gamma-ray spectral features produced by the annihilation of WIMPs at very high energies. Here we present a dedicated search for gamma-ray boxes - sharp spectral features that cannot be mimicked by astrophysical sources - with the upcoming Cherenkov Telescope Array (CTA). Using realistic projections for the instrument performance and detailed background modelling, a pro file likelihood analysis is implemented to derive the expected upper limits and sensitivity reach after 100 h of observations towards a 2 degrees x 2 degrees region around the Galactic centre. Our results show that CTA will be able to probe gamma-ray boxes down to annihilation cross sections of 10(-27) - 10(-26) cm(3)/s up to tens of TeV. We also identify a number of concrete particle physics models providing thermal dark matter candidates that can be used as target benchmarks in future search campaigns. This constitutes a golden opportunity for CTA to either discover or rule out multi-TeV thermal dark matter in a corner of parameter space where all other experimental efforts are basically insensitive.
  •  
7.
  • Iocco, Fabio, et al. (författare)
  • Evidence for dark matter in the inner Milky Way
  • 2015
  • Ingår i: Nature Physics. - 1745-2473 .- 1745-2481. ; 11:3, s. 245-248
  • Tidskriftsartikel (refereegranskat)abstract
    • The ubiquitous presence of dark matter in the Universe is today a central tenet in modern cosmology and astrophysics(1). Throughout the Universe, the evidence for dark matter is compelling in dwarfs, spiral galaxies, galaxy clusters as well as at cosmological scales. However, it has been historically difficult to pin down the dark matter contribution to the total mass density in the Milky Way, particularly in the innermost regions of the Galaxy and in the solar neighbourhood(2). Here we present an up-to-date compilation of Milky Way rotation curve measurements(3-13), and compare it with state-of-the-art baryonic mass distribution models(14-26). We show that current data strongly disfavour baryons as the sole contribution to the Galactic mass budget, even inside the solar circle. Our findings demonstrate the existence of dark matter in the inner Galaxy without making any assumptions about its distribution. We anticipate that this result will compel new model-independent constraints on the dark matter local density and profile, thus reducing uncertainties on direct and indirect dark matter searches, and will help reveal the structure and evolution of the Galaxy.
  •  
8.
  • Iocco, Fabio, et al. (författare)
  • Testing modified Newtonian dynamics in the Milky Way
  • 2015
  • Ingår i: Physical Review D. - 1550-7998 .- 1550-2368. ; 92:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Modified Newtonian dynamics (MOND) is an empirical theory originally proposed to explain the rotation curves of spiral galaxies by modifying the gravitational acceleration, rather than by invoking dark matter. Here, we set constraints on MOND using an up-to-date compilation of kinematic tracers of the Milky Way and a comprehensive collection of morphologies of the baryonic component in the Galaxy. In particular, we find that the so-called standard interpolating function cannot explain at the same time the rotation curve of the Milky Way and that of external galaxies for any of the baryonic models studied, while the so-called simple interpolating function can for a subset of models. Upcoming astronomical observations will refine our knowledge on the morphology of baryons and will ultimately confirm or rule out the validity of MOND in the Milky Way. We also present constraints on MOND-like theories without making any assumptions on the interpolating function.
  •  
9.
  • Pato, Miguel, et al. (författare)
  • Dynamical constraints on the dark matter distribution in the Milky Way
  • 2015
  • Ingår i: Journal of Cosmology and Astroparticle Physics. - : IOP Publishing. - 1475-7516. ; :12
  • Tidskriftsartikel (refereegranskat)abstract
    • An accurate knowledge of the dark matter distribution in the Milky Way is of crucial importance for galaxy formation studies and current searches for particle dark matter. In this paper we set new dynamical constraints on the Galactic dark matter profile by comparing the observed rotation curve, updated with a comprehensive compilation of kinematic tracers, with that inferred from a wide range of observation-based morphologies of the bulge, disc and gas. The generalised Navarro-Frenk-White (NFW) and Einasto dark matter profiles are fitted to the data in order to determine the favoured ranges of local density, slope and scale radius. For a representative baryonic model, a typical local circular velocity v(0) = 230 km/s and a distance of the Sun to the Galactic centre R-0 = 8 kpc, we find a local dark matter density rho(0) = 0.420(-0.018)(+0.021) (2 sigma) +/- 0.025 GeV/cm(3) (rho(0) = 0.420(-0.021)(+0.019) (2 sigma) +/- 0.026 GeV/cm(3)) for NFW (Einasto), where the second error is an estimate of the systematic due to baryonic modelling. Apart from the Galactic parameters, the main sources of uncertainty inside and outside the solar circle are baryonic modelling and rotation curve measurements, respectively. Upcoming astronomical observations are expected to reduce all these uncertainties substantially over the coming years.
  •  
10.
  • Sivertsson, Sofia, 1982- (författare)
  • Studies of dark matter in and around stars
  • 2012
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • There is by now compelling evidence that most of the matter in the Universe is in the form of dark matter, a form of matter quite different from the matter we experience in every day life. The gravitational effects of this dark matter have been observed in many different ways but its true nature is still unknown. In most models, dark matter particles can annihilate with each other into standard model particles; the direct or indirect observation of such annihilation products could give important clues for the dark matter puzzle. For signals from dark matter annihilations to be detectable, typically high dark matter densities are required. Massive objects, such as stars, can increase the local dark matter density both via scattering off nucleons and by pulling in dark matter gravitationally as a star forms. Annihilations within this kind of dark matter population gravitationally bound to a star, like the Sun, give rise to a gamma ray flux. For a star which has a planetary system, dark matter can become gravitationally bound also through gravitational interactions with the planets. The interplay between the different dark matter populations in the solar system is analyzed, shedding new light on dark matter annihilations inside celestial bodies and improving the predicted experimental reach. Dark matter annihilations inside a star would also deposit energy in the star which, if abundant enough, could alter the stellar evolution. This is investigated for the very first stars in the Universe. Finally, there is a possibility for abundant small scale dark matter overdensities to have formed in the early Universe. Prospects of detecting gamma rays from such minihalos, which have survived until the present day, are discussed.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy