SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bertorello Alejandro) "

Sökning: WFRF:(Bertorello Alejandro)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Anedda, Francesca, et al. (författare)
  • Multiple polymorphisms affect expression and function of the neuropeptide S receptor (NPSR1)
  • 2011
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 6:12, s. e29523-
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: neuropeptide S (NPS) and its receptor NPSR1 act along the hypothalamic-pituitary-adrenal axis to modulate anxiety, fear responses, nociception and inflammation. The importance of the NPS-NPSR1 signaling pathway is highlighted by the observation that, in humans, NPSR1 polymorphism associates with asthma, inflammatory bowel disease, rheumatoid arthritis, panic disorders, and intermediate phenotypes of functional gastrointestinal disorders. Because of the genetic complexity at the NPSR1 locus, however, true causative variations remain to be identified, together with their specific effects on receptor expression or function. To gain insight into the mechanisms leading to NPSR1 disease-predisposing effects, we performed a thorough functional characterization of all NPSR1 promoter and coding SNPs commonly occurring in Caucasians (minor allele frequency >0.02). Principal Findings: we identified one promoter SNP (rs2530547 [-103]) that significantly affects luciferase expression in gene reporter assays and NPSR1 mRNA levels in human leukocytes. We also detected quantitative differences in NPS-induced genome-wide transcriptional profiles and CRE-dependent luciferase activities associated with three NPSR1 non-synonymous SNPs (rs324981 [Ile107Asn], rs34705969 [Cys197Phe], rs727162 [Arg241Ser]), with a coding variant exhibiting a loss-of-function phenotype (197Phe). Potential mechanistic explanations were sought with molecular modelling and bioinformatics, and a pilot study of 2230 IBD cases and controls provided initial support to the hypothesis that different cis-combinations of these functional SNPs variably affect disease risk. Significance: these findings represent a first step to decipher NPSR1 locus complexity and its impact on several human conditions NPS antagonists have been recently described, and our results are of potential pharmacogenetic relevance.
  •  
2.
  • Bertorello, Alejandro M., et al. (författare)
  • Increased Arterial Blood Pressure and Vascular Remodeling in Mice Lacking Salt-Inducible Kinase 1 (SIK1)
  • 2015
  • Ingår i: Circulation Research. - : American Heart Association. - 0009-7330 .- 1524-4571. ; 116:4, s. 642-U190
  • Tidskriftsartikel (refereegranskat)abstract
    • Rationale: In human genetic studies a single nucleotide polymorphism within the salt-inducible kinase 1 (SIK1) gene was associated with hypertension. Lower SIK1 activity in vascular smooth muscle cells (VSMCs) leads to decreased sodium-potassium ATPase activity, which associates with increased vascular tone. Also, SIK1 participates in a negative feedback mechanism on the transforming growth factor-beta 1 signaling and downregulation of SIK1 induces the expression of extracellular matrix remodeling genes. Objective: To evaluate whether reduced expression/activity of SIK1 alone or in combination with elevated salt intake could modify the structure and function of the vasculature, leading to higher blood pressure. Methods and Results: SIK1 knockout (sik1(-/-)) and wild-type (sik1(+/+)) mice were challenged to a normal-or chronic high-salt intake (1% NaCl). Under normal-salt conditions, the sik1(-/-) mice showed increased collagen deposition in the aorta but similar blood pressure compared with the sik1(+/+) mice. During high-salt intake, the sik1+/+ mice exhibited an increase in SIK1 expression in the VSMCs layer of the aorta, whereas the sik1(-/-) mice exhibited upregulated transforming growth factor-beta 1 signaling and increased expression of endothelin-1 and genes involved in VSMC contraction, higher systolic blood pressure, and signs of cardiac hypertrophy. In vitro knockdown of SIK1 induced upregulation of collagen in aortic adventitial fibroblasts and enhanced the expression of contractile markers and of endothelin-1 in VSMCs. Conclusions: Vascular SIK1 activation might represent a novel mechanism involved in the prevention of high blood pressure development triggered by high-salt intake through the modulation of the contractile phenotype of VSMCs via transforming growth factor-beta 1-signaling inhibition.
  •  
3.
  • Eliasson, Lena, et al. (författare)
  • PKC-dependent stimulation of exocytosis by sulfonylureas in pancreatic beta cells
  • 1996
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 1095-9203 .- 0036-8075. ; 271:5250, s. 813-815
  • Tidskriftsartikel (refereegranskat)abstract
    • Hypoglycemic sulfonylureas represent a group of clinically useful antidiabetic compounds that stimulate insulin secretion from pancreatic beta cells. The molecular mechanisms involved are not fully understood but are believed to involve inhibition of potassium channels sensitive to adenosine triphosphate (KATP channels) in the beta cell membrane, causing membrane depolarization, calcium influx, and activation of the secretory machinery. In addition to these effects, sulfonylureas also promoted exocytosis by direct interaction with the secretory machinery not involving closure of the plasma membrane KATP channels. This effect was dependent on protein kinase C (PKC) and was observed at therapeutic concentrations of sulfonylureas, which suggests that it contributes to their hypoglycemic action in diabetics.
  •  
4.
  • Popov, Sergej, et al. (författare)
  • Salt-inducible kinase 1 influences Na+,K+-ATPase activity in vascular smooth muscle cells and associates with variations in blood pressure
  • 2011
  • Ingår i: Journal of Hypertension. - : Lippincott Williams & Wilkins. - 0263-6352 .- 1473-5598. ; 29:12, s. 2395-2403
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVES:Essential hypertension is a complex condition whose cause involves the interaction of multiple genetic and environmental factors such as salt intake. Salt-inducible kinase 1 (SIK1) is a sucrose-nonfermenting-like kinase isoform that belongs to the AMPK (5' adenosine monophosphate-activated protein kinase) family. SIK1 activity is increased by high salt intake and plays an essential role in regulating the plasma membrane Na(+),K(+)-ATPase. The objective of this study was to examine whether SIK1 is present in vascular smooth muscle cells (VSMCs) and endothelial cells, whether it affects VSMC Na(+),K(+)-ATPase activity and whether human SIK1 (hSIK1) represents a potential candidate for blood pressure regulation.METHODS:Localization of SIK1 was performed using immunohistochemistry, mRNA and western blot. Functional assays (Na(+),K(+)-ATPase activity) were performed in VSMCs derived from rat aorta. Genotype-phenotype association studies were performed in three Swedish and one Japanese population-based cohorts.RESULTS:SIK1 was localized in human VSMCs and endothelial cells, as well as a cell line derived from rat aorta. A nonsynonymous single nucleotide polymorphism in the hSIK1 gene exon 3 (C→T, rs3746951) results in the amino acid change (15)Gly→Ser in the SIK1 protein. SIK1-(15)Ser was found to increase plasma membrane Na(+),K(+)-ATPase activity in cultured VSMC line from rat aorta. Genotype-phenotype association studies in three Swedish and one Japanese population-based cohorts suggested that T allele (coding for (15)Ser) was associated with lower blood pressure (P = 0.005 for SBP and P = 0.002 for DBP) and with a decrease in left ventricular mass (P = 0.048).CONCLUSION:The hSIK1 appears to be of potential relevance within VSMC function and blood pressure regulation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy