SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Besnard Aurélien) "

Search: WFRF:(Besnard Aurélien)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Blary, Constance, et al. (author)
  • Detection of wind turbines rotary motion by birds : A matter of speed and contrast
  • 2023
  • In: Conservation Science and Practice. - 2578-4854. ; 5:10
  • Journal article (peer-reviewed)abstract
    • To reduce bird collisions on wind turbines, Automatic Detection Systems have been developed to locate approaching birds and trigger turbines to slowdown to 2–3 rotations per minute (rpm). However, it is unknown whether birds can detect this reduced speed and avoid the turbine. We conducted an operant conditioning experiment on domestic doves (Streptopelia roseogrisea) and Harris's hawks (Parabuteo unicinctus) to assess their ability to discriminate between stationary and rotating miniature wind turbines, depending on the rotation speed and the contrast between the white blades and the background (only for doves for the latter). At high contrast, regardless of the speed tested, hawks were able to differentiate between the rotating and stationary turbines, while doves were not able to discriminate the slow-rotating turbine (3 rpm) from the stationary one. The discrimination threshold increased to 8 rpm for the doves when the contrast was reduced. Our results suggest that the residual wind turbine speed of 2–3 rpm may not be detected by all bird species under all environmental conditions. Increasing the contrast between wind turbines and their environment may improve the detection of low-speed rotation by some birds, otherwise, complete turbine shutdown should be recommended.
  •  
2.
  • Blary, Constance L.M., et al. (author)
  • Low achromatic contrast sensitivity in birds : a common attribute shared by many phylogenetic orders
  • 2024
  • In: The Journal of experimental biology. - 1477-9145. ; 227:3
  • Journal article (peer-reviewed)abstract
    • Vision is an important sensory modality in birds, which can outperform other vertebrates in some visual abilities. However, sensitivity to achromatic contrasts - the ability to discern luminance difference between two objects or an object and its background - has been shown to be lower in birds compared with other vertebrates. We conducted a comparative study to evaluate the achromatic contrast sensitivity of 32 bird species from 12 orders using the optocollic reflex technique. We then performed an analysis to test for potential variability in contrast sensitivity depending on the corneal diameter to the axial length ratio, a proxy of the retinal image brightness. To account for potential influences of evolutionary relatedness, we included phylogeny in our analyses. We found a low achromatic contrast sensitivity for all avian species studied compared with other vertebrates (except small mammals), with high variability between species. This variability is partly related to phylogeny but appears to be independent of image brightness.
  •  
3.
  • Reinke, Beth A, et al. (author)
  • Diverse aging rates in ectothermic tetrapods provide insights for the evolution of aging and longevity
  • 2022
  • In: Science. - : American Association for the Advancement of Science. - 0036-8075 .- 1095-9203. ; 376:6600, s. 1459-1466
  • Journal article (peer-reviewed)abstract
    • Comparative studies of mortality in the wild are necessary to understand the evolution of aging; yet, ectothermic tetrapods are underrepresented in this comparative landscape, despite their suitability for testing evolutionary hypotheses. We present a study of aging rates and longevity across wild tetrapod ectotherms, using data from 107 populations (77 species) of nonavian reptiles and amphibians. We test hypotheses of how thermoregulatory mode, environmental temperature, protective phenotypes, and pace of life history contribute to demographic aging. Controlling for phylogeny and body size, ectotherms display a higher diversity of aging rates compared with endotherms and include phylogenetically widespread evidence of negligible aging. Protective phenotypes and life-history strategies further explain macroevolutionary patterns of aging. Analyzing ectothermic tetrapods in a comparative context enhances our understanding of the evolution of aging.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view