SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Betti Marco) "

Sökning: WFRF:(Betti Marco)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Farnocchia, Davide, et al. (författare)
  • The Second International Asteroid Warning Network Timing Campaign: 2005 LW3
  • 2023
  • Ingår i: The Planetary Science Journal. - : Institute of Physics (IOP). - 2632-3338. ; 4:11
  • Tidskriftsartikel (refereegranskat)abstract
    • The Earth close approach of near-Earth asteroid 2005 LW3 on 2022 November 23 represented a good opportunity for a second observing campaign to test the timing accuracy of astrometric observation. With 82 participating stations, the International Asteroid Warning Network collected 1046 observations of 2005 LW3 around the time of the close approach. Compared to the previous timing campaign targeting 2019 XS, some individual observers were able to significantly improve the accuracy of their reported observation times. In particular, U.S. surveys achieved good timing performance. However, no broad, systematic improvement was achieved compared to the previous campaign, with an overall negative bias persisting among the different observers. The calibration of observing times and the mitigation of timing errors should be important future considerations for observers and orbit computers, respectively.
  •  
2.
  • Betti, Marco, et al. (författare)
  • Manipulating photorespiration to increase plant productivity : recent advances and perspectives for crop improvement
  • 2016
  • Ingår i: Journal of Experimental Botany. - : Oxford University Press (OUP). - 0022-0957 .- 1460-2431. ; 67:10, s. 2977-2988
  • Forskningsöversikt (refereegranskat)abstract
    • Recycling of the 2-phosphoglycolate generated by the oxygenase reaction of Rubisco requires a complex and energy-consuming set of reactions collectively known as the photorespiratory cycle. Several approaches aimed at reducing the rates of photorespiratory energy or carbon loss have been proposed, based either on screening for natural variation or by means of genetic engineering. Recent work indicates that plant yield can be substantially improved by the alteration of photorespiratory fluxes or by engineering artificial bypasses to photorespiration. However, there is also evidence indicating that, under certain environmental and/or nutritional conditions, reduced photorespiratory capacity may be detrimental to plant performance. Here we summarize recent advances obtained in photorespiratory engineering and discuss prospects for these advances to be transferred to major crops to help address the globally increasing demand for food and biomass production.
  •  
3.
  • Hodges, Michael, et al. (författare)
  • Perspectives for a better understanding of the metabolic integration of photorespiration within a complex plant primary metabolism network
  • 2016
  • Ingår i: Journal of Experimental Botany. - : Oxford University Press (OUP). - 0022-0957 .- 1460-2431. ; 67:10, s. 3015-3026
  • Forskningsöversikt (refereegranskat)abstract
    • Recent advances in photorespiration research are described and future priorities to better understand the metabolic integration of the photorespiratory cycle within the complex network of plant primary metabolism are discussed.Photorespiration is an essential high flux metabolic pathway that is found in all oxygen-producing photosynthetic organisms. It is often viewed as a closed metabolic repair pathway that serves to detoxify 2-phosphoglycolic acid and to recycle carbon to fuel the Calvin-Benson cycle. However, this view is too simplistic since the photorespiratory cycle is known to interact with several primary metabolic pathways, including photosynthesis, nitrate assimilation, amino acid metabolism, C-1 metabolism and the Krebs (TCA) cycle. Here we will review recent advances in photorespiration research and discuss future priorities to better understand (i) the metabolic integration of the photorespiratory cycle within the complex network of plant primary metabolism and (ii) the importance of photorespiration in response to abiotic and biotic stresses.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy