SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bettiga Maurizio 1978) "

Sökning: WFRF:(Bettiga Maurizio 1978)

  • Resultat 1-10 av 58
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ask, Magnus, 1983, et al. (författare)
  • Engineering glutathione biosynthesis of Saccharomyces cerevisiae increases robustness to inhibitors in pretreated lignocellulosic materials
  • 2013
  • Ingår i: Microbial Cell Factories. - : Springer Science and Business Media LLC. - 1475-2859. ; 12:87
  • Tidskriftsartikel (refereegranskat)abstract
    • Production of bioethanol from lignocellulosic biomass requires the development of robust microorganisms that can tolerate the stressful conditions prevailing in lignocellulosic hydrolysates. Several inhibitors are known to affect the redox metabolism of cells. In this study, Saccharomyces cerevisiae was engineered for increased robustness by modulating the redox state through overexpression of GSH1, CYS3 and GLR1, three genes involved in glutathione (GSH) metabolism. Overexpression constructs were stably integrated into the genome of the host strains yielding five strains overexpressing GSH1, GSH1/CYS3, GLR1, GSH1/GLR1 and GSH1/CYS3/GLR1. Overexpression of GSH1 resulted in a 42% increase in the total intracellular glutathione levels compared to the wild type. Overexpression of GSH1/CYS3, GSH/GLR1 and GSH1/CYS3/GLR1 all resulted in equal or less intracellular glutathione concentrations than overexpression of only GSH1, although higher than the wild type. GLR1 overexpression resulted in similar total glutathione levels as the wild type. Surprisingly, all recombinant strains had a lower [reduced glutathione]:[oxidized glutathione] ratio (ranging from 32--67) than the wild type strain (88), suggesting a more oxidized intracellular environment in the engineered strains. When considering the glutathione half-cell redox potential (Ehc), the difference between the strains was less pronounced. Ehc for the recombinant strains ranged from -225 to -216 mV, whereas for the wild type it was estimated to -225 mV. To test whether the recombinant strains were more robust in industrially relevant conditions, they were evaluated in simultaneous saccharification and fermentation (SSF) of pretreated spruce. All strains carrying the GSH1 overexpression construct performed better than the wild type in terms of maximum ethanol concentration, ethanol yield and furfural and HMF conversion. The strain overexpressing GSH1/GLR1 produced 14.0 g L-1 ethanol in 48 hours corresponding to an ethanol yield on hexoses of 0.17 g g-1, compared to the wild type, which produced 8.2 g L-1 ethanol in 48 hours resulting in an ethanol yield on hexoses of 0.10 g g-1. In this study, we showed that engineering of the redox state by modulating the levels of intracellular glutathione results in increased robustness of S. cerevisiae in SSF of pretreated spruce.
  •  
2.
  • Ask, Magnus, 1983, et al. (författare)
  • HMF and furfural stress results in drainage of redox and energy charge of Saccharomyces cerevisiae
  • 2012
  • Ingår i: 13th International Congress on Yeasts, Madison, WI, USA.
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Bioethanol produced from lignocellulosic raw materials is a promising alternative to fossil fuels and to decrease greenhouse gas emissions, but several challenges still exist. When lignocellulosic biomass is pretreated, a number of undesired degradation products are generated which may act inhibitory on microbial metabolism. Cellular damage response and repair come at an energy cost for the cell, which could be reflected by alterations in (energy) metabolism. The furaldehydes HMF and furfural have received increasing attention recently. They are formed during pretreatment from dehydration of hexoses and pentoses, respectively. In the present study, the effects of HMF and furfural on redox metabolism, energy metabolism and transcriptome were investigated. Anaerobic chemostat cultivations were performed with the xylose-utilizing Saccharomyces cerevisiae strain VTT C-10883 with both glucose and xylose as carbon sources. By quantifying the redox cofactors NAD(P)+ and NAD(P)H, the catabolic and anabolic reduction charges could be calculated. It was found that both reduction charges were significantly decreased in the presence of HMF and furfural, showing that HMF and furfural are draining the cells of reductive power. Furthermore, the [ATP]/[ADP] ratio of stressed cells was found to be lower than for non-stressed cells, suggesting that the energy metabolism was affected. Transcriptome analysis revealed that genes involved in xenobiotic transporter activity were significantly enriched among the up-regulated genes. The results from the present study provide valuable insights of how Saccharomyces cerevisiae deals with stress imposed by HMF and furfural, which potentially can result in strategies to improve stress tolerance.
  •  
3.
  • Ask, Magnus, 1983, et al. (författare)
  • Intracellular redox state as key target for Saccharomyces cerevisiae tolerance to lignocellulosic hydrolysate inhibitors
  • 2013
  • Ingår i: 35th Symposium on Biotechnology for Fuels and Chemicals (April 29-May 2, 2013).
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Liberation of sugars monomers from the polysaccharides constituting lignocellulosic biomass requires pretreatment and hydrolysis. Harsh conditions during pretreatment promote the formation of a number of inhibitory compounds, among which the furaldehydes furfural and hydroxymethylfurfural (HMF) have shown to impede growth and limit ethanol productivity of the yeast Saccharomyces cerevisiae. Cellular damage response to such inhibitory molecules and repair come at an energy cost for the cell, which could be reflected by alterations in energy and redox metabolism. In this study, S. cerevisiae cultures where treated with sub-lethal concentrations of furfural and HMF, both in continuous and batch cultivations. In continuous cultures, the inhibitors concentration was as close as possible to lethal, yet allowing steady state. In batch cultivations, the chosen concentration completely inhibited growth, yet allowing growth resumption. Metabolites connected to energy and redox metabolism such as NAD(P)H, NADP+, ATP, ADP and AMP were quantified and transcriptome analysis was performed. The results, along with data from thorough physiological characterisation under the studied conditions, suggested a severe impact of furfural and HMF on energy and redox metabolism. Based on this evidence, new strain with altered redox carriers intracellular concentration were engineered. The new recombinant strains showed higher ethanol productivity in the presence of lignocellulosic hydrolysate inhibitors.
  •  
4.
  • Ask, Magnus, 1983, et al. (författare)
  • TARGETING THE INTRACELLULAR REDOX STATE IN THE DEVELOPMENT OF MORE ROBUST Saccharomyces cerevisiae STRAINS FOR LIGNOCELLULOSIC BIOETHANOL PRODUCTION
  • 2014
  • Ingår i: ISSY31: 31ST INTERNATIONAL SPECIALISED SYMPOSIUM ON YEAST.
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Bioethanol produced from lignocellulosic raw materials is a promising alternative to fossil fuels and to decrease greenhouse gas emissions, but several challenges still exist. When lignocellulosic biomass is pretreated, a number of undesired degradation products are generated, among which the furaldehydes furfural and hydroxymethylfurfural (HMF) have shown to impede growth and limit ethanol productivity of the yeast Saccharomyces cerevisiae. In the present study, a recombinant, xylose-utilizing S. cerevisiae strain was challenged with sub-lethal concentrations of furfural and HMF in anaerobic batch cultivations. By pulsing furaldehydes in either the glucose or the xylose consumption phase, perturbations in the intracellular NAD(P)H/NAD(P)+ ratios could be demonstrated. A genome-wide study of transcription found that genes related to NADPH-requiring processes, such as nitrogen and sulphur assimilation, were significantly induced. Moreover, the protective metabolite and antioxidant glutathione was identified as the highest scoring reporter metabolite in the transcriptome analysis. S. cerevisiae strains overproducing glutathione were constructed and the resulting strains were evaluated in simultaneous saccharification and fermentation (SSF) of pretreated spruce. The results from the present study provide valuable insights of how S. cerevisiae responds to stress imposed by HMF and furfural and how such information could be used to engineer more robust yeast strains.
  •  
5.
  • Ask, Magnus, 1983, et al. (författare)
  • The influence of HMF and furfural on redox-balance and energy-state of xylose-utilizing Saccharomyces cerevisiae
  • 2013
  • Ingår i: Biotechnology for Biofuels. - : Springer Science and Business Media LLC. - 1754-6834 .- 1754-6834. ; 6:22
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundPretreatment of biomass for lignocellulosic ethanol production generates compounds that can inhibit microbial metabolism. The furan aldehydes hydroxymethylfurfural (HMF) and furfural have received increasing attention recently. In the present study, the effects of HMF and furfural on redox metabolism, energy metabolism and gene expression were investigated in anaerobic chemostats where the inhibitors were added to the feed-medium.ResultsBy cultivating the xylose-utilizing Saccharomyces cerevisiae strain VTT C-10883 in the presence of HMF and furfural, it was found that the intracellular concentrations of the redox co-factors and the catabolic and anabolic reduction charges were significantly lower in the presence of furan aldehydes than in cultivations without inhibitors. The catabolic reduction charge decreased from 0.13(+/-0.005) to 0.08(+/-0.002) and the anabolic reduction charge decreased from 0.46(+/-0.11) to 0.27(+/-0.02) when HMF and furfural were present. The intracellular ATP concentration was lower when inhibitors were added, but resulted only in a modest decrease in the energy charge from 0.87(+/-0.002) to 0.85(+/-0.004) compared to the control. Transcriptome profiling followed by MIPS functional enrichment analysis of up-regulated genes revealed that the functional group "Cell rescue, defense and virulence" was over-represented when inhibitors were present compared to control cultivations. Among these, the ATP-binding efflux pumps PDR5 and YOR1 were identified as important for inhibitor efflux and possibly a reason for the lower intracellular ATP concentration in stressed cells. It was also found that genes involved in pseudohyphal growth were among the most up-regulated when inhibitors were present in the feed-medium suggesting nitrogen starvation. Genes involved in amino acid metabolism, glyoxylate cycle, electron transport and amino acid transport were enriched in the down-regulated gene set in response to HMF and furfural. It was hypothesized that the HMF and furfural-induced NADPH drainage could influence ammonia assimilation and thereby give rise to the nitrogen starvation response in the form of pseudohyphal growth and down-regulation of amino acid synthesis.ConclusionsThe redox metabolism was severely affected by HMF and furfural while the effects on energy metabolism were less evident, suggesting that engineering of the redox system represents a possible strategy to develop more robust strains for bioethanol production.
  •  
6.
  • Ask, Magnus, 1983, et al. (författare)
  • Transcriptional response and alterations in adenonucleotides and redox cofactors in S. cerevisiae upon treatment with HMF and furfural
  • 2012
  • Ingår i: Advanced Biofuels in a Biorefinery Approach, February 28-March 1, Copenhagen, Denmark.
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Liberation of sugars monomers from the polysaccharides constituting lignocellulosic biomass requires pretreatment and hydrolysis. Harsh conditions during pretreatment promote the formation of a number of inhibitory compounds, among which the furaldehydes furfural and hydroxymethylfurfural (HMF) have shown to impede growth and limit ethanol productivity of the yeast Saccharomyces cerevisiae.In the present study, a recombinant xylose-utilizing S. cerevisiae strain was challenged with sub-lethal concentrations of furfural and HMF in anaerobic continuous and batch cultivations. The inhibitors concentration was as close as possible to lethal, yet allowing steady state in continuous cultivations. For batch cultivations, the chosen concentration completely inhibited growth, yet allowing growth resumption. Analysis of the transcriptome and the levels of intracellular metabolites connected to energy and redox metabolism was performed in comparison with cells grown in the absence of inhibitors. Exposure to furaldehydes caused a significant alteration of the fermentation products, especially in batch cultivations. Transcriptome analysis revealed that genes involved in xenobiotic transporter activity were significantly enriched among the up-regulated genes upon inhibitors treatment. Furthermore, inhibitors treatment significantly decreased both catabolic and anabolic reduction charges, indicating that HMF and furfural are draining the cells of reductive power during growth. In addition, HMF and furfural caused a reduction in the [ATP]/[ADP] ratio in treated cells, suggesting that the energy metabolism was affected. The results from the present study provide valuable insights into how S. cerevisiae deals with stress imposed by HMF and furfural, which potentially can result in development of strategies to improve stress tolerance during fermentation of wood hydrolysate.
  •  
7.
  • Bettiga, Maurizio, 1978, et al. (författare)
  • Robust S. cerevisiae strain for next generation bio-processes: concepts and case-studies
  • 2013
  • Ingår i: Cell Factories and Biosustainability (Hilleroed, Denmark, May 5-8 2013).
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • The realization of an oil independent economy relies on the development of competitive processes for the production of fuels and chemicals from renewable resources. The extensive research on second-generation ethanol has paved the way to a new concept of bio-based industry, where lignocellulosic material is the primary source of sugars, to be converted to a number of fuels and chemicals. Harsh conditions during the bioconversion of lignocellulose-derived sugars to the desired products drastically hamper cell viability and therefore productivity. Microbial inhibition limits bioprocesses to an extent such that it can be said that understanding and harnessing microbial robustness is a prerequisite for the feasibility of new bioprocess and the production of renewable fuels and chemicals.Current research carried out by our group focuses on the yeast Saccharomyces cerevisiae and aims at investigating the molecular bases of microbial robustness. Our efforts include the identification of the molecular targets of different classes of fermentation inhibitors aiming at understanding the complex responses of the cells to these compounds. The final goal is to engineer more robust strains. The concept of robustness will be discussed and examples of key features for S. cerevisiae robustness as well as examples of successful engineering to increase robustness will be presented.
  •  
8.
  • Bettiga, Maurizio, 1978, et al. (författare)
  • Robust S. cerevisiae strain for next generation bio-processes: concepts and case-studies
  • 2013
  • Ingår i: 35th Symposium on Biotechnology for Fuels and Chemicals (Portland, OR. April 29-May 2, 2013).
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • The realization of an oil independent economy relies on the development of competitive processes for the production of fuels and chemicals from renewable resources. The extensive research on second-generation ethanol has paved the way to a new concept of bio-based industry, where lignocellulosic material is the primary source of sugars, to be converted to a number of fuels and chemicals. Sugars are released from cellulose and hemicellulose by pretreatment and hydrolysis steps. Harsh conditions result in the formation of a number of compounds, originating from sugars and lignin breakdown and acting as microorganism inhibitors. Weak organic acids, furaldehydes and phenolic compounds are sources of stress for the fermenting microorganism, as they influence cellular metabolism in a number of ways, including direct damage on cellular functions or by perturbations of the cellular energy and redox metabolism. In addition, the product of interest can act as a potent inhibitor. Regardless of the product, robust microorganisms are a prerequisite for the feasibility of lignocellulose-based bioprocesses.Current research carried out by our group focuses on the yeast Saccharomyces cerevisiae and aims at investigating the molecular bases of microbial robustness. Our efforts include the identification of the molecular targets of different classes of fermentation inhibitors aiming at understanding the complex responses of the cells to these compounds. The final goal is to engineer more robust strains. The concept of robustness will be discussed and examples of key features for S. cerevisiae robustness as well as examples of successful engineering to increase robustness will be presented.
  •  
9.
  • Bettiga, Maurizio, 1978, et al. (författare)
  • Robust yeast strains as prerequisite for feasible biofuels production from renewable biomass resources
  • 2013
  • Ingår i: FEMS-V congress of European Microbiologists.
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • The extensive research on second-generation ethanol has paved the way to a new concept of industry, where lignocellulosic material is the primary source of sugars for the bio-based production of a number of fuels and chemicals. The technological achievements in biomass pretreatment and hydrolysis allow today to efficiently obtain sugars from cellulose and hemicellulose. However, a number of unwanted compounds, acting as microorganism inhibitors, are released from sugars and lignin breakdown as well. In addition, the product of interest can act as a potent inhibitor. Regardless of the product, robust microorganisms are a prerequisite for the feasibility of lignocellulose-based bioprocesses.Current research carried out by our group aims at investigating the molecular bases of microbial robustness, with a major focus on the yeast Saccharomyces cerevisiae. The molecular targets of different classes of fermentation inhibitors can be identified and used as cues for new strategies to engineer more robust strains. During the presentation, the concept of robustness will be discussed and examples of key features for S. cerevisiae robustness will be presented.
  •  
10.
  • Bettiga, Maurizio, 1978, et al. (författare)
  • Yeast physiology studies and metabolic engineering for enhanced robustness
  • 2014
  • Ingår i: Enzitec 2014- XI Seminário Brasileiro de Tecnologia Enzimática. Barra da Tijuca-Rio de Janeiro, April 14th to 16th, 2014.
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • The extensive research on second-generation ethanol has paved the way to a new concept of bio-based industry, where lignocellulosic material is the primary source of sugars, to be converted to a number of fuels and chemicals. Sugars are released from cellulose and hemicellulose by pretreatment and hydrolysis steps. Harsh conditions during pretreatment promote the formation of a number of inhibitory compounds, among which weak organic acids, furaldehydes and phenolic compounds. In addition, the product of interest can act as a potent inhibitor. Regardless of the product, robust microorganisms are a prerequisite for the feasibility of lignocellulose-based bioprocesses.Current research carried out by our group focuses on the yeast Saccharomyces cerevisiae and aims at investigating the molecular bases of microbial robustness. Our efforts include the identification of the molecular targets of different classes of fermentation inhibitors aiming at understanding the complex responses of the cells to these compounds. The final goal is to engineer more robust strains. The concept of robustness will be discussed and examples of key features for S. cerevisiae robustness as well as examples of successful engineering to increase robustness will be presented.In particular, during this presentation, the following results will be discussed i) the study of redox and energy metabolism as key determinants of tolerance; ii) conversion routes of in S. cerevisiae as a way of detoxification from phenolic compounds; iii) cell membrane engineering as a strategy to achieve enhanced tolerance to weak acids.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 58
Typ av publikation
konferensbidrag (31)
tidskriftsartikel (22)
forskningsöversikt (2)
bokkapitel (2)
annan publikation (1)
Typ av innehåll
övrigt vetenskapligt/konstnärligt (34)
refereegranskat (24)
Författare/redaktör
Bettiga, Maurizio, 1 ... (58)
Olsson, Lisbeth, 196 ... (43)
Adeboye, Peter, 1982 (14)
Ask, Magnus, 1983 (13)
Mapelli, Valeria, 19 ... (10)
Lindberg, Lina, 1984 (10)
visa fler...
Eriksson, Leif A, 19 ... (6)
Lindahl, Lina, 1984 (6)
Genheden, Samuel (6)
Santos, Aline X S (5)
Riezman, Howard (5)
Christakopoulos, Pau ... (4)
Rova, Ulrika (4)
Matsakas, Leonidas (4)
Patel, Alok, Dr. 198 ... (4)
Raju Duraiswamy, Var ... (4)
Albers, Eva, 1966 (3)
Aldaeus, Fredrik (2)
Höck, Heidi (2)
Porro, Danilo (2)
Branduardi, Paola (2)
Sousa Da Rocha, Sofi ... (2)
Maertens, Jeroen, 19 ... (2)
Marx, Christian, 197 ... (2)
Gorwa-Grauslund, Mar ... (1)
Larsson, Per Tomas (1)
Larsson, P.T. (1)
Olsson, Lars (1)
Nyström, Thomas, 196 ... (1)
Wallace, Valeria (1)
Allard, Stefan, 1968 (1)
Gorwa-Grauslund, Mar ... (1)
Raju Duraiswamy, Var ... (1)
Trivellin, Cecilia, ... (1)
Bertacchi, Stefano (1)
Alberghina, Lilia (1)
Garcia Sanchez, Rosa (1)
Raghavendran, Vijaye ... (1)
Deprez, Marie Anne (1)
Winderickx, Joris (1)
Krikigianni, Eleni (1)
Papaleo, E (1)
Guaragnella, Nicolet ... (1)
Guo, Zhongpeng, 1983 (1)
Kampman, Christel, 1 ... (1)
Jarlsvik, Tisse (1)
Martinsson, Ulf (1)
Petersson, Susanna (1)
Li, Ying-Ying (1)
Faria-Oliveira, F. (1)
visa färre...
Lärosäte
Chalmers tekniska högskola (58)
Göteborgs universitet (6)
Luleå tekniska universitet (4)
Lunds universitet (3)
RISE (1)
Språk
Engelska (58)
Forskningsämne (UKÄ/SCB)
Teknik (49)
Naturvetenskap (35)
Medicin och hälsovetenskap (4)
Lantbruksvetenskap (4)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy