SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bettini Cristian) "

Sökning: WFRF:(Bettini Cristian)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kovtun, Alessandro, et al. (författare)
  • Core-shell graphene oxide-polymer hollow fibers as water filters with enhanced performance and selectivity
  • 2021
  • Ingår i: Faraday Discussions. - : Royal Society of Chemistry (RSC). - 1359-6640 .- 1364-5498. ; 227, s. 274-290
  • Tidskriftsartikel (refereegranskat)abstract
    • Commercial hollow fiber filters for micro- and ultrafiltration are based on size exclusion and do not allow the removal of small molecules such as antibiotics. Here, we demonstrate that a graphene oxide (GO) layer can be firmly immobilized either inside or outside polyethersulfone-polyvinylpyrrolidone hollow fiber (Versatile PES (R), hereafter PES) modules and that the resulting core-shell fibers inherits the microfiltration ability of the pristine PES fibers and the adsorption selectivity of GO. GO nanosheets were deposited on the fiber surface by filtration of a GO suspension through a PES cartridge (cut-off 0.1-0.2 mu m), then fixed by thermal annealing at 80 degrees C, rendering the GO coating stably fixed and unsoluble. The filtration cut-off, retention selectivity and efficiency of the resulting inner and outer modified hollow fibers (HF-GO) were tested by performing filtration on water and bovine plasma spiked with bovine serum albumin (BSA, 66 kDa, approximate to 15 nm size), monodisperse polystyrene nanoparticles (52 nm and 303 nm sizes), with two quinolonic antibiotics (ciprofloxacin and ofloxacin) and rhodamine B (RhB). These tests showed that the microfiltration capability of PES was retained by HF-GO, and in addition the GO coating can capture the molecular contaminants while letting through BSA and smaller polystyrene nanoparticles. Combined XRD, molecular modelling and adsorption experiments show that the separation mechanism does not rely only on physical size exclusion, but involves intercalation of solute molecules between the GO layers.
  •  
2.
  • Kovtun, Alessandro, et al. (författare)
  • Graphene oxide–polysulfone filters for tap water purification, obtained by fast microwave oven treatment
  • 2019
  • Ingår i: Nanoscale. - : Royal Society of Chemistry (RSC). - 2040-3372 .- 2040-3364. ; 11:11, s. 22780-22787
  • Tidskriftsartikel (refereegranskat)abstract
    • The availability of clean, pure water is a major challenge for the future of our society. 2-Dimensional nanosheets of GO seem promising as nanoporous adsorbent or filters for water purification; however, their processing in macroscopic filters is challenging, and their cost vs. standard polymer filters is too high. Here, we describe a novel approach to combine graphene oxide (GO) sheets with commercial polysulfone (PSU) membranes for improved removal of organic contaminants from water. The adsorption physics of contaminants on the PSU-GO composite follows Langmuir and Brunauer–Emmett–Teller (BET) models, with partial swelling and intercalation of molecules in between the GO layers. Such a mechanism, well-known in layered clays, has not been reported previously for graphene or GO. Our approach requires minimal amounts of GO, deposited directly on the surface of the polymer, followed by stabilization using microwaves or heat. The purification efficiency of the PSU-GO composites is significantly improved vs. benchmark commercial PSU, as demonstrated by the removal of two model contaminants, rhodamine B and ofloxacin. The excellent stability of the composite is confirmed by extensive (100 hours) filtration tests in commercial water cartridges.
  •  
3.
  • Vulcano, Fabio, et al. (författare)
  • Dopamine-functionalized graphene oxide as a high-performance material for biosensing
  • 2020
  • Ingår i: 2D Materials. - : IOP Publishing. - 2053-1583. ; 7:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We describe a nanocomposite material for the electrochemical detection of beta-nicotinamide adenine dinucleotide (NADH), a coenzyme involved in redox reactions of all living cells and in the detection of many organic species by electrochemical biosensors. The composite is made of nanosheets of electrochemically exfoliated graphene oxide (EGO) covalently functionalized with dopamine (DP) molecules. The EGODP material finally obtained is rich of 1,2-dihydroxyphenyl moieties and is able to detect NADH at a particular low potential value with higher sensitivity with respect to pristine EGO. To study the effectiveness of 1,2-dihydroxyphenyl moieties in inducing electrocatalytic oxidation of NADH, we combined standard voltammetric techniques with UV-Vis absorption spectroelectrochemistry, which allowed us to measure the variations in composition occurring at the electrode vertical bar solution interface, i.e. to measure the consumption rate of NADH. Spectroelectrochemical tests performed by polarising the electrode at a fixed potential value were finally used to compare the performance of EGODP with both EGO and EGO-DP blend (MIX) for the detection of NADH. The covalently functionalized EGO (EGODP) shows sensitivity to NADH up to 300 M-1, around 180 % and 140 % better than either pristine EGO or MIX, respectively.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy