SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Betway May Katlyn R.) "

Sökning: WFRF:(Betway May Katlyn R.)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Elphinstone, Cassandra, et al. (författare)
  • Multiple Pleistocene refugia for Arctic Bell-Heather revealed with genomic analyses of modern and historic plants
  • 2024
  • Ingår i: Journal of Biogeography. - 0305-0270 .- 1365-2699.
  • Tidskriftsartikel (refereegranskat)abstract
    • Aim: Arctic plants survived the Pleistocene glaciations in unglaciated refugia. The number, ages, and locations of these refugia are often unclear. We use high-resolution genomic data from present-day and Little-Ice-Age populations of Arctic Bell-Heather to re-evaluate the biogeography of this species and determine whether it had multiple independent refugia or a single refugium in Beringia. Location: Circumpolar Arctic and Coastal British Columbia (BC) alpine. Taxon: Cassiope tetragona L., subspecies saximontana and tetragona, outgroup C. mertensiana (Ericaceae). Methods: We built genotyping-by-sequencing (GBS) libraries using Cassiope tetragona tissue from 36 Arctic locations, including two ~250- to 500-year-old populations collected under glacial ice on Ellesmere Island, Canada. We assembled a de novo GBS reference to call variants. Population structure, genetic diversity and demography were inferred from PCA, ADMIXTURE, fastsimcoal2, SplitsTree, and several population genomics statistics. Results: Population structure analyses identified 4–5 clusters that align with geographic locations. Nucleotide diversity was highest in Beringia and decreased eastwards across Canada. Demographic coalescent analyses dated the following splits with Alaska: BC subspecies saximontana (5 mya), Russia (~1.4 mya), Europe (>200–600 kya), and Greenland (~60 kya). Northern Canada populations appear to have formed during the current interglacial (7–9 kya). Admixture analyses show genetic variants from Alaska appear more frequently in present-day than historic plants on Ellesmere Island. Conclusions: Population and demographic analyses support BC, Alaska, Russia, Europe and Greenland as all having had independent Pleistocene refugia. Northern Canadian populations appear to be founded during the current interglacial with genetic contributions from Alaska, Europe and Greenland. We found evidence, on Ellesmere Island, for continued recent gene flow in the last 250–500 years. These results suggest that a re-analysis of other Arctic species with shallow population structure using higher resolution genomic markers and demographic analyses may help reveal deeper structure and other circumpolar glacial refugia.
  •  
2.
  • Lett, Signe, et al. (författare)
  • Can bryophyte groups increase functional resolution in tundra ecosystems?
  • 2022
  • Ingår i: Arctic Science. - Ottawa : Canadian Science Publishing. - 2368-7460. ; 8:3, s. 609-637
  • Tidskriftsartikel (refereegranskat)abstract
    • The relative contribution of bryophytes to plant diversity, primary productivity, and ecosystem functioning increases towards colder climates. Bryophytes respond to environmental changes at the species level, but because bryophyte species are relatively difficult to identify, they are often lumped into one functional group. Consequently, bryophyte function remains poorly resolved. Here, we explore how higher resolution of bryophyte functional diversity can be encouraged and implemented in tundra ecological studies. We briefly review previous bryophyte functional classifications and the roles of bryophytes in tundra ecosystems and their susceptibility to environmental change. Based on shoot morphology and colony organization, we then propose twelve easily distinguishable bryophyte functional groups. To illustrate how bryophyte functional groups can help elucidate variation in bryophyte effects and responses, we compiled existing data on water holding capacity, a key bryophyte trait. Although plant functional groups can mask potentially high interspecific and intraspecific variability, we found better separation of bryophyte functional group means compared with previous grouping systems regarding water holding capacity. This suggests that our bryophyte functional groups truly represent variation in the functional roles of bryophytes in tundra ecosystems. Lastly, we provide recommendations to improve the monitoring of bryophyte community changes in tundra study sites.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy