SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bezgin Gleb) "

Sökning: WFRF:(Bezgin Gleb)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Sanchez-Rodriguez, Lazaro M, et al. (författare)
  • Personalized whole-brain neural mass models reveal combined Aβ and tau hyperexcitable influences in Alzheimer's disease.
  • 2024
  • Ingår i: Communications biology. - 2399-3642. ; 7:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Neuronal dysfunction and cognitive deterioration in Alzheimer's disease (AD) are likely caused by multiple pathophysiological factors. However, mechanistic evidence in humans remains scarce, requiring improved non-invasive techniques and integrative models. We introduce personalized AD computational models built on whole-brain Wilson-Cowan oscillators and incorporating resting-state functional MRI, amyloid-β (Aβ) and tau-PET from 132 individuals in the AD spectrum to evaluate the direct impact of toxic protein deposition on neuronal activity. This subject-specific approach uncovers key patho-mechanistic interactions, including synergistic Aβ and tau effects on cognitive impairment and neuronal excitability increases with disease progression. The data-derived neuronal excitability values strongly predict clinically relevant AD plasma biomarker concentrations (p-tau217, p-tau231, p-tau181, GFAP) and grey matter atrophy obtained through voxel-based morphometry. Furthermore, reconstructed EEG proxy quantities show the hallmark AD electrophysiological alterations (theta band activity enhancement and alpha reductions) which occur with Aβ-positivity and after limbic tau involvement. Microglial activation influences on neuronal activity are less definitive, potentially due to neuroimaging limitations in mapping neuroprotective vs detrimental activation phenotypes. Mechanistic brain activity models can further clarify intricate neurodegenerative processes and accelerate preventive/treatment interventions.
  •  
2.
  • Sanchez-Rodriguez, Lazaro M, et al. (författare)
  • Revealing the combined roles of Aβ and tau in Alzheimer's disease via a pathophysiological activity decoder.
  • 2023
  • Ingår i: bioRxiv : the preprint server for biology. - : Cold Spring Harbor Laboratory.
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Neuronal dysfunction and cognitive deterioration in Alzheimer's disease (AD) are likely caused by multiple pathophysiological factors. However, evidence in humans remains scarce, necessitating improved non-invasive techniques and integrative mechanistic models. Here, we introduce personalized brain activity models incorporating functional MRI, amyloid-β (Aβ) and tau-PET from AD-related participants (N=132). Within the model assumptions, electrophysiological activity is mediated by toxic protein deposition. Our integrative subject-specific approach uncovers key patho-mechanistic interactions, including synergistic Aβ and tau effects on cognitive impairment and neuronal excitability increases with disease progression. The data-derived neuronal excitability values strongly predict clinically relevant AD plasma biomarker concentrations (p-tau217, p-tau231, p-tau181, GFAP). Furthermore, our results reproduce hallmark AD electrophysiological alterations (theta band activity enhancement and alpha reductions) which occur with Aβ-positivity and after limbic tau involvement. Microglial activation influences on neuronal activity are less definitive, potentially due to neuroimaging limitations in mapping neuroprotective vs detrimental phenotypes. Mechanistic brain activity models can further clarify intricate neurodegenerative processes and accelerate preventive/treatment interventions.
  •  
3.
  • Schaffer Aguzzoli, Cristiano, et al. (författare)
  • Neuropsychiatric Symptoms and Microglial Activation in Patients with Alzheimer Disease
  • 2023
  • Ingår i: JAMA network open. - 2574-3805. ; 6:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Importance: Neuropsychiatric symptoms are commonly encountered and are highly debilitating in patients with Alzheimer disease. Understanding their underpinnings has implications for identifying biomarkers and treatment for these symptoms. Objective: To evaluate whether glial markers are associated with neuropsychiatric symptoms in individuals across the Alzheimer disease continuum. Design, Setting, and Participants: This cross-sectional study was conducted from January to June 2023, leveraging data from the Translational Biomarkers in Aging and Dementia cohort at McGill University, Canada. Recruitment was based on referrals of individuals from the community or from outpatient clinics. Exclusion criteria included active substance abuse, major surgery, recent head trauma, safety contraindications for positron emission tomography (PET) or magnetic resonance imaging, being currently enrolled in other studies, and having inadequately treated systemic conditions. Main Outcomes and Measures: All individuals underwent assessment for neuropsychiatric symptoms (Neuropsychiatry Inventory Questionnaire [NPI-Q]), and imaging for microglial activation ([11C]PBR28 PET), amyloid-β ([18F]AZD4694 PET), and tau tangles ([18F]MK6240 PET). Results: Of the 109 participants, 72 (66%) were women and 37 (34%) were men; the median age was 71.8 years (range, 38.0-86.5 years). Overall, 70 had no cognitive impairment and 39 had cognitive impairment (25 mild; 14 Alzheimer disease dementia). Amyloid-β PET positivity was present in 21 cognitively unimpaired individuals (30%) and in 31 cognitively impaired individuals (79%). The NPI-Q severity score was associated with microglial activation in the frontal, temporal, and parietal cortices (β=7.37; 95% CI, 1.34-13.41; P=.01). A leave-one-out approach revealed that irritability was the NPI-Q domain most closely associated with the presence of brain microglial activation (β=6.86; 95% CI, 1.77-11.95; P=.008). Furthermore, we found that microglia-associated irritability was associated with study partner burden measured by NPI-Q distress score (β=5.72; 95% CI, 0.33-11.10; P=.03). Conclusions and Relevance: In this cross-sectional study of 109 individuals across the AD continuum, microglial activation was associated with and a potential biomarker of neuropsychiatric symptoms in Alzheimer disease. Moreover, our findings suggest that the combination of amyloid-β- and microglia-targeted therapies could have an impact on relieving these symptoms.
  •  
4.
  • Therriault, Joseph, et al. (författare)
  • Association of Phosphorylated Tau Biomarkers With Amyloid Positron Emission Tomography vs Tau Positron Emission Tomography.
  • 2022
  • Ingår i: JAMA neurology. - : American Medical Association (AMA). - 2168-6157 .- 2168-6149. ; 80:2, s. 188-99
  • Tidskriftsartikel (refereegranskat)abstract
    • The recent proliferation of phosphorylated tau (p-tau) biomarkers has raised questions about their preferential association with the hallmark pathologies of Alzheimer disease (AD): amyloid-β plaques and tau neurofibrillary tangles.To determine whether cerebrospinal fluid (CSF) and plasma p-tau biomarkers preferentially reflect cerebral β-amyloidosis or neurofibrillary tangle aggregation measured with positron emission tomography (PET).This was a cross-sectional study of 2 observational cohorts: the Translational Biomarkers in Aging and Dementia (TRIAD) study, with data collected between October 2017 and August 2021, and the Alzheimer's Disease Neuroimaging Initiative (ADNI), with data collected between September 2015 and November 2019. TRIAD was a single-center study, and ADNI was a multicenter study. Two independent subsamples were derived from TRIAD. The first TRIAD subsample comprised individuals assessed with CSF p-tau (p-tau181, p-tau217, p-tau231, p-tau235), [18F]AZD4694 amyloid PET, and [18F]MK6240 tau PET. The second TRIAD subsample included individuals assessed with plasma p-tau (p-tau181, p-tau217, p-tau231), [18F]AZD4694 amyloid PET, and [18F]MK6240 tau PET. An independent cohort from ADNI comprised individuals assessed with CSF p-tau181, [18F]florbetapir PET, and [18F]flortaucipir PET. Participants were included based on the availability of p-tau and PET biomarker assessments collected within 9 months of each other. Exclusion criteria were a history of head trauma or magnetic resonance imaging/PET safety contraindications. No participants who met eligibility criteria were excluded.Amyloid PET, tau PET, and CSF and plasma assessments of p-tau measured with single molecule array (Simoa) assay or enzyme-linked immunosorbent assay.Associations between p-tau biomarkers with amyloid PET and tau PET.A total of 609 participants (mean [SD] age, 66.9 [13.6] years; 347 female [57%]; 262 male [43%]) were included in the study. For all 4 phosphorylation sites assessed in CSF, p-tau was significantly more closely associated with amyloid-PET values than tau-PET values (p-tau181 difference, 13%; 95% CI, 3%-22%; P=.006; p-tau217 difference, 11%; 95% CI, 3%-20%; P=.003; p-tau231 difference, 15%; 95% CI, 5%-22%; P<.001; p-tau235 difference, 9%; 95% CI, 1%-19%; P=.02) . These results were replicated with plasma p-tau181 (difference, 11%; 95% CI, 1%-22%; P=.02), p-tau217 (difference, 9%; 95% CI, 1%-19%; P=.02), p-tau231 (difference, 13%; 95% CI, 3%-24%; P=.009), and CSF p-tau181 (difference, 9%; 95% CI, 1%-21%; P=.02) in independent cohorts.Results of this cross-sectional study of 2 observational cohorts suggest that the p-tau abnormality as an early event in AD pathogenesis was associated with amyloid-β accumulation and highlights the need for careful interpretation of p-tau biomarkers in the context of the amyloid/tau/neurodegeneration, or A/T/(N), framework.
  •  
5.
  • Tissot, Cécile, et al. (författare)
  • Plasma pTau181 predicts cortical brain atrophy in aging and Alzheimer's disease.
  • 2021
  • Ingår i: Alzheimer's research & therapy. - : Springer Science and Business Media LLC. - 1758-9193. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • To investigate the association of plasma pTau181, assessed with a new immunoassay, with neurodegeneration of white matter and gray matter cross-sectionally and longitudinally, in aging and Alzheimer's disease.Observational data was obtained from the Alzheimer's Disease Neuroimaging Initiative, in which participants underwent plasma assessment and magnetic resonance imaging. Based on their clinical diagnosis, participants were classified as cognitively unimpaired and cognitively impaired. Linear regressions and linear mixed-effect models were used to test the cross-sectional and longitudinal associations between baseline plasma pTau181 and neurodegeneration using voxel-based morphometry.We observed a negative correlation at baseline between plasma pTau181 and gray matter volume in cognitively unimpaired individuals. In cognitively impaired individuals, we observed a negative association between plasma pTau181 and both gray and white matter volume. In longitudinal analyses conducted in the cognitively unimpaired group, plasma pTau181 was negatively correlated with gray matter volume, starting 36months after baseline assessments. Finally, in cognitively impaired individuals, plasma pTau181 concentrations were negatively correlated with both gray and white matter volume as early as 12months after baseline, and neurodegeneration increased in an incremental manner until 48months.Higher levels of plasma pTau181 correlate with neurodegeneration and predict further brain atrophy in aging and Alzheimer's disease. Plasma pTau181 may be useful in predicting AD-related neurodegeneration, comparable to positron emission tomography or cerebrospinal fluid assessment with high specificity for AD neurodegeneration.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy