SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bhai Mehta Ratnesh) "

Sökning: WFRF:(Bhai Mehta Ratnesh)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Atikuzzaman, Mohammad, et al. (författare)
  • Mating induces the expression of immune- and pH-regulatory genes in the utero-vaginal junction containing mucosal sperm-storage tubuli of hens
  • 2015
  • Ingår i: Reproduction. - : Bioscientifica. ; 150:6, s. 473-483
  • Tidskriftsartikel (refereegranskat)abstract
    • The female chicken, as with other species with internal fertilization, can tolerate the presence of spermatozoa within specialized sperm-storage tubuli (SST) located in the mucosa of the utero-vaginal junction (UVJ) for days or weeks, without eliciting an immune response. To determine if the oviduct alters its gene expression in response to sperm entry, segments from the oviduct (UVJ, uterus, isthmus, magnum and infundibulum) of mated and unmated (control) hens, derived from an advanced inter-cross line between Red Junglefowl and White Leghorn, were explored 24 h after mating using cDNA microarray analysis. Mating shifted the expression of fifteen genes in the UVJ (53.33% immune-modulatory and 20.00% pH-regulatory) and seven genes in the uterus, none of the genes in the latter segment overlapping the former (with the differentially expressed genes themselves being less related to immune-modulatory function). The other oviductal segments did not show any significant changes. These findings suggest sperm deposition causes a shift in expression in the UVJ (containing mucosal SST) and the uterus for genes involved in immune-modulatory and pH-regulatory functions, both relevant for sperm survival in the hen's oviduct.
  •  
2.
  • Badam, Tejaswi, et al. (författare)
  • CD4(+) T-cell DNA methylation changes during pregnancy significantly correlate with disease-associated methylation changes in autoimmune diseases
  • 2022
  • Ingår i: Epigenetics. - : Taylor & Francis Group. - 1559-2294 .- 1559-2308. ; 17:9, s. 1040-1055
  • Tidskriftsartikel (refereegranskat)abstract
    • Epigenetics may play a central, yet unexplored, role in the profound changes that the maternal immune system undergoes during pregnancy and could be involved in the pregnancy-induced modulation of several autoimmune diseases. We investigated changes in the methylome in isolated circulating CD4(+) T-cells in non-pregnant and pregnant women, during the 1(st) and 2(nd) trimester, using the Illumina Infinium Human Methylation 450K array, and explored how these changes were related to autoimmune diseases that are known to be affected during pregnancy. Pregnancy was associated with several hundreds of methylation differences, particularly during the 2(nd) trimester. A network-based modular approach identified several genes, e.g., CD28, FYN, VAV1 and pathways related to T-cell signalling and activation, highlighting T-cell regulation as a central component of the observed methylation alterations. The identified pregnancy module was significantly enriched for disease-associated methylation changes related to multiple sclerosis, rheumatoid arthritis and systemic lupus erythematosus. A negative correlation between pregnancy-associated methylation changes and disease-associated changes was found for multiple sclerosis and rheumatoid arthritis, diseases that are known to improve during pregnancy whereas a positive correlation was found for systemic lupus erythematosus, a disease that instead worsens during pregnancy. Thus, the directionality of the observed changes is in line with the previously observed effect of pregnancy on disease activity. Our systems medicine approach supports the importance of the methylome in immune regulation of T-cells during pregnancy. Our findings highlight the relevance of using pregnancy as a model for understanding and identifying disease-related mechanisms involved in the modulation of autoimmune diseases.
  •  
3.
  •  
4.
  •  
5.
  • Forsberg, Anna, et al. (författare)
  • Pre- and postnatal Lactobacillus reuteri treatment alters DNA methylation of infant T helper cells
  • 2020
  • Ingår i: Pediatric Allergy and Immunology. - : WILEY. - 0905-6157 .- 1399-3038. ; 31:5, s. 544-553
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Perinatal childhood exposures, including probiotic supplementation, may affect epigenetic modifications and impact on immune maturation and allergy development. The aim of this study was to assess the effects of pre- and postnatal Lactobacillus reuteri supplementation on DNA methylation in relation to immune maturation and allergy development. Methods DNA methylation patterns were investigated for allergy-related T helper subsets using a locus-specific method and at a genome-wide scale using the Illumina 450K array. From a randomised, double-blind, placebo-controlled allergy prevention trial with pre- and postnatal probiotic supplementation, CD4+ T helper cells were obtained at birth (from cord blood), and 12 and 24 months of age (total (placebo/probiotics); locus-specific method: CB = 32 (17/15), 12 months = 24 (9/15), 24 months = 35 (15/20); Illumina: CB = 19 (10/9), 12 months = 10 (6/4), 24 months = 19(11/8)). Results Comparing probiotics to placebo, the greatest genome-wide differential DNA methylation was observed at birth, where the majority of sites were hypomethylated, indicating transcriptional accessibility in the probiotic group. Bioinformatic analyses, including network analyses, revealed a module containing 91 genes, enriched for immune-related pathways such as chemotaxis, PI3K-Akt, MAPK and TGF-beta signalling. A majority of the module genes were associated with atopic manifestations (OR = 1.43, P = 2.4 x 10(-6)), and a classifier built on this model could predict allergy development (AUC = 0.78, P = 3.0 x 10(e-3)). Pathways such as IFN-gamma signalling and T-cell activation were more hypermethylated at birth compared with later in life in both intervention groups over time, in line with DNA methylation patterns in the IFNG locus obtained by the locus-specific methodology. Conclusion Maternal L. reuteri supplementation during pregnancy alters DNA methylation patterns in CD4+ T cells towards enhanced immune activation at birth, which may affect immune maturation and allergy development.
  •  
6.
  • Hellberg, Sandra, et al. (författare)
  • Maintained thymic output of conventional and regulatory T cells during human pregnancy
  • 2019
  • Ingår i: Journal of Allergy and Clinical Immunology. - Philadelphia, United States : American Academy of Allergy, Asthma and Immunology. - 0091-6749 .- 1097-6825. ; 143:2, s. 771-775.e7
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • During pregnancy, immunological tolerance toward the semiallogeneic fetus needs to be established while at the same time an effective immune defense must be maintained.1 The pregnancy-associated thymic involution reported in rodents2 has been suggested to support maternal immune regulation by reducing the output of potentially harmful TH cells. However, the functional importance of this thymic involution remains unclear and it is not known whether it even occurs in humans.3 In fact, the role of thymus during human pregnancy and in pregnancy-associated tolerance remains largely unknown,4 albeit a role for thymic-derived regulatory T (Treg) cells in pregnancy complications has been suggested,4 supporting a role for thymus in immune regulation during human pregnancy. The aim of this study was to assess the role of thymus in TH-cell regulation during human pregnancy by analyzing the output of different TH-cell populations.
  •  
7.
  • Lindau, Robert, et al. (författare)
  • Interleukin-34 is present at the fetal-maternal interface and induces immunoregulatory macrophages of a decidual phenotype in vitro
  • 2018
  • Ingår i: Human Reproduction. - : OXFORD UNIV PRESS. - 0268-1161 .- 1460-2350. ; 33:4, s. 588-599
  • Tidskriftsartikel (refereegranskat)abstract
    • STUDY QUESTION: Is the newly discovered cytokine interleukin (IL)-34 expressed at the human fetal-maternal interface in order to influence polarization of monocytes into macrophages of a decidual immunoregulatory phenotype? SUMMARY ANSWER: IL-34 was found to be present at the fetal-maternal interface, in both fetal placenta and maternal decidua, and it was able to polarize monocytes into macrophages of a decidual phenotype. WHAT IS KNOWN ALREADY: IL-34 was shown to bind to the same receptor as macrophage-colony stimulating factor (M-CSF), which has an important immunomodulatory role at the fetal-maternal interface, for example by polarizing decidual macrophages to an M2-like regulatory phenotype. IL-34 is known to regulate macrophage subsets, such as microglia and Langerhans cells, but its presence at the fetal-maternal interface is unknown. STUDY DESIGN, SIZE, DURATION: The presence of IL-34 at the fetal-maternal interface was evaluated by immunohistochemistry (IHC) and ELISA in placental and decidual tissues as well as in isolated trophoblast cells and decidual stromal cells obtained from first trimester elective surgical terminations of pregnancy (n = 49). IL-34 expression was also assessed in third trimester placental biopsies from women with (n = 21) or without (n = 15) pre-eclampsia. The effect of IL-34 on macrophage polarization was evaluated in an in vitro model of blood monocytes obtained from healthy volunteers (n = 14). In this model, granulocyte macrophage-colony stimulating factor (GM-CSF) serves as a growth factor for M1-like polarization, and M-CSF as a growth factor for M2-like polarization. PARTICIPANTS/MATERIALS, SETTING, METHODS: First trimester placental and decidual tissues were obtained from elective pregnancy terminations. Placental biopsies were obtained from women with pre-eclampsia and matched controls in the delivery ward. Polarization of macrophages in vitro was determined by flow-cytometric phenotyping and secretion of cytokines and chemokines in cell-free supernatants by multiplex bead assay. MAIN RESULTS AND THE ROLE OF CHANCE: Our study shows that IL-34 is produced at the fetal-maternal interface by both placental cyto-and syncytiotrophoblasts and decidual stromal cells. We also show that IL-34, in vitro, is able to polarize blood monocytes into macrophages with a phenotype (CD14(high)CD163(+)CD209(+)) and cytokine secretion pattern similar to that of decidual macrophages. The IL-34-induced phenotype was similar, but not identical to the phenotype induced by M-CSF, and both IL-34-and M-CSF-induced macrophages were significantly different (P amp;lt; 0.05-0.0001 depending on marker) from GM-CSF-polarized M1-like macrophages. Our findings suggest that IL-34 is involved in the establishment of the tolerant milieu found at the fetal-maternal interface by skewing polarization of macrophages into a regulatory phenotype. LIMITATIONS, REASONS FOR CAUTION: Although it is clear that IL-34 is present at the fetal-maternal interface and polarizes macrophages in vitro, its precise role in vivo remains to be established. WIDER IMPLICATIONS OF THE FINDINGS: The recently discovered cytokine IL-34 is present at the fetal-maternal interface and has immunomodulatory properties with regard to induction of decidual macrophages, which are important for a healthy pregnancy. Knowledge of growth factors related to macrophage polarization can potentially be translated to treatment of pregnancy complications involving dysregulation of this process. STUDY FUNDING/COMPETING INTEREST(S): This study was funded by grants from the Medical Research Council (Grant K2013-61X-22310-01-04), the Research Council of South-East Sweden (FORSS), and the County Council of Ostergotland, Sweden. No author has any conflicts of interest to declare.
  •  
8.
  • Svensson-Arvelund, Judit, 1982-, et al. (författare)
  • The Human Fetal Placenta Promotes Tolerance against the Semiallogeneic Fetus by Inducing Regulatory T Cells and Homeostatic M2 Macrophages
  • 2015
  • Ingår i: Journal of Immunology. - : American Association of Immunologists. - 0022-1767 .- 1550-6606. ; 194:4, s. 1534-1544
  • Tidskriftsartikel (refereegranskat)abstract
    • A successful pregnancy requires that the maternal immune system is instructed to a state of tolerance to avoid rejection of the semiallogeneic fetal-placental unit. Although increasing evidence supports that decidual (uterine) macrophages and regulatory T cells (Tregs) are key regulators of fetal tolerance, it is not known how these tolerogenic leukocytes are induced. In this article, we show that the human fetal placenta itself, mainly through trophoblast cells, is able to induce homeostatic M2 macrophages and Tregs. Placental-derived M-CSF and IL-10 induced macrophages that shared the CD14(+)CD163(+)CD206(+)CD209(+) phenotype of decidual macrophages and produced IL-10 and CCL18 but not IL-12 or IL-23. Placental tissue also induced the expansion of CD25(high)CD127(low)Foxp3(+) Tregs in parallel with increased IL-10 production, whereas production of IFN-gamma (Th1), IL-13 (Th2), and IL-17 (Th17) was not induced. Tregs expressed the suppressive markers CTLA-4 and CD39, were functionally suppressive, and were induced, in part, by IL-10, TGF-beta, and TRAIL. Placental-derived factors also limited excessive Th cell activation, as shown by decreased HLA-DR expression and reduced secretion of Th1-, Th2-, and Th17-associated cytokines. Thus, our data indicate that the fetal placenta has a central role in promoting the homeostatic environment necessary for successful pregnancy. These findings have implications for immune-mediated pregnancy complications, as well as for our general understanding of tissue-induced tolerance.
  •  
9.
  • Verma, Deepti, et al. (författare)
  • Anti-mycobacterial activity correlates with altered DNA methylation pattern in immune cells from BCG-vaccinated subjects
  • 2017
  • Ingår i: Scientific Reports. - : NATURE PUBLISHING GROUP. - 2045-2322. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • The reason for the largely variable protective effect against TB of the vaccine Bacille Calmette-Guerin (BCG) is not understood. In this study, we investigated whether epigenetic mechanisms are involved in the response of immune cells to the BCG vaccine. We isolated peripheral blood mononuclear cells (PBMCs) from BCG-vaccinated subjects and performed global DNA methylation analysis in combination with functional assays representative of innate immunity against Mycobacterium tuberculosis infection. Enhanced containment of replication was observed in monocyte-derived macrophages from a subgroup of BCG-vaccinated individuals (identified as responders). A stable and robust differential DNA methylation pattern in response to BCG could be observed in PBMCs isolated from the responders but not from the non-responders. Gene ontology analysis revealed that promoters with altered DNA methylation pattern were strongly enriched among genes belonging to immune pathways in responders, however no enrichments could be observed in the non-responders. Our findings suggest that BCG-induced epigenetic reprogramming of immune cell function can enhance anti-mycobacterial immunity in macrophages. Understanding why BCG induces this response in responders but not in nonresponders could provide clues to improvement of TB vaccine efficacy.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy