SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bhatt Uma S.) "

Sökning: WFRF:(Bhatt Uma S.)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Box, Jason E., et al. (författare)
  • Key indicators of Arctic climate change: 1971–2017
  • 2019
  • Ingår i: Environmental Research Letters. - : IOP Publishing. - 1748-9326. ; 14:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Key observational indicators of climate change in the Arctic, most spanning a 47 year period (1971–2017) demonstrate fundamental changes among nine key elements of the Arctic system. We find that, coherent with increasing air temperature, there is an intensification of the hydrological cycle, evident from increases in humidity, precipitation, river discharge, glacier equilibrium line altitude and land ice wastage. Downward trends continue in sea ice thickness (and extent) and spring snow cover extent and duration, while near-surface permafrost continues to warm. Several of the climate indicators exhibit a significant statistical correlation with air temperature or precipitation, reinforcing the notion that increasing air temperatures and precipitation are drivers of major changes in various components of the Arctic system. To progress beyond a presentation of the Arctic physical climate changes, we find a correspondence between air temperature and biophysical indicators such as tundra biomass and identify numerous biophysical disruptions with cascading effects throughout the trophic levels. These include: increased delivery of organic matter and nutrients to Arctic near‐coastal zones; condensed flowering and pollination plant species periods; timing mismatch between plant flowering and pollinators; increased plant vulnerability to insect disturbance; increased shrub biomass; increased ignition of wildfires; increased growing season CO2 uptake, with counterbalancing increases in shoulder season and winter CO2 emissions; increased carbon cycling, regulated by local hydrology and permafrost thaw; conversion between terrestrial and aquatic ecosystems; and shifting animal distribution and demographics. The Arctic biophysical system is now clearly trending away from its 20th Century state and into an unprecedented state, with implications not only within but beyond the Arctic. The indicator time series of this study are freely downloadable at AMAP.no.
  •  
2.
  • Myers-Smith, Isla H., et al. (författare)
  • Complexity revealed in the greening of the Arctic
  • 2020
  • Ingår i: Nature Climate Change. - : Springer Science and Business Media LLC. - 1758-678X .- 1758-6798. ; 10:2, s. 106-117
  • Tidskriftsartikel (refereegranskat)abstract
    • As the Arctic warms, vegetation is responding, and satellite measures indicate widespread greening at high latitudes. This ‘greening of the Arctic’ is among the world’s most important large-scale ecological responses to global climate change. However, a consensus is emerging that the underlying causes and future dynamics of so-called Arctic greening and browning trends are more complex, variable and inherently scale-dependent than previously thought. Here we summarize the complexities of observing and interpreting high-latitude greening to identify priorities for future research. Incorporating satellite and proximal remote sensing with in-situ data, while accounting for uncertainties and scale issues, will advance the study of past, present and future Arctic vegetation change.
  •  
3.
  • Walker, Donald A., et al. (författare)
  • Cumulative Effects of Rapid Land-Cover and Land-Use Changes on the Yamal Peninsula, Russia
  • 2011
  • Ingår i: Eurasian Arctic Land Cover and Land Use in a Changing Climate. - New York : Springer Netherlands. - 9789048191178 - 9789048191185 ; , s. 207-236
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)abstract
    • The Yamal Peninsula in northwest Siberia is undergoing some of the most rapid land-cover and land-use changes in the Arctic due to a combination of gas development, reindeer herding, and climate change. Unusual geological conditions (nutrient-poor sands, massive ground ice and extensive landslides) exacerbate the impacts. These changes will likely increase markedly as transportation corridors are built to transport the gas to market. Understanding the nature, extent, causes and consequences (i.e., the cumulative effects) of the past and ongoing rapid changes on the Yamal is important for effective, long-term decision-making and planning. The cumulative effects to vegetation are the focus of this chapter because the plants are a critical component of the Yamal landscape that support the indigenous Nenets people and their reindeer and also protect the underlying ice-rich permafrost from melting. We are using a combination of ground-based studies (a transect of live locations across the Yamal), remote-sensing studies, and analyses of Nenets land-use activities to develop vegetation-change models that can be used to help anticipate future states of the tundra and how those changes might affect traditional reindeer herding practices and the thermal state of the permafrost. This chapter provides an overview of the approach, some early results, and recommendations for expanding the concept of cumulative-effects analysis to include examining the simultaneous and interactive effects of multiple drivers of change.
  •  
4.
  • Bhatt, Uma S., et al. (författare)
  • Implications of Arctic Sea Ice Decline for the Earth System
  • 2014
  • Ingår i: Annual Review of Environment and Resources. - : Annual Reviews. - 1545-2050 .- 1543-5938. ; 39, s. 57-57
  • Forskningsöversikt (refereegranskat)abstract
    • Arctic sea ice decline has led to an amplification of surface warming and is projected to continue to decline from anthropogenic forcing, although the exact timing of ice-free summers is uncertain owing to large natural variability. Sea ice reductions affect surface heating patterns and the atmospheric pressure distribution, which may alter midlatitude extreme weather patterns. Increased light penetration and nutrient availability during spring from earlier ice breakup enhances primary production in the Arctic Ocean and its adjacent shelf seas. Ice-obligate marine mammals may be losers, whereas seasonally migrant species may be winners from rapid sea ice decline. Tundra greening is occurring across most of the Arctic, driven primarily by warming temperatures, and is displaying complex spatial patterns that are likely tied to other factors. Sea ice changes are affecting greenhouse gas exchanges as well as halogen chemistry in the Arctic. This review highlights the heterogeneous nature of Arctic change, which is vital for researchers to better understand.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4
Typ av publikation
tidskriftsartikel (2)
forskningsöversikt (1)
bokkapitel (1)
Typ av innehåll
refereegranskat (3)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Bhatt, Uma S. (4)
Romanovsky, Vladimir ... (3)
Walker, Donald A. (3)
Epstein, Howard E. (2)
Forbes, Bruce C. (2)
Post, Eric (2)
visa fler...
Walsh, John E. (2)
Meier, Walter N. (2)
Parmentier, Frans-Ja ... (2)
Stordal, Frode (1)
Cornelissen, J. Hans ... (1)
Goetz, Scott J. (1)
Raynolds, Martha K. (1)
Loranty, Michael M. (1)
Treharne, Rachael (1)
Lund, Magnus (1)
Schmidt, Niels Marti ... (1)
Parmentier, Frans-Ja ... (1)
Björkman, Anne, 1981 (1)
Sullivan, Patrick F. (1)
Mernild, Sebastian H ... (1)
Kaarlejärvi, Elina (1)
Phoenix, Gareth K. (1)
Olofsson, Johan (1)
Christensen, Torben (1)
Parker, Thomas C. (1)
Kumpula, Timo (1)
Macias-Fauria, Marc (1)
Normand, Signe (1)
Wilmking, Martin (1)
Stammler, Florian (1)
Berner, Logan T. (1)
Carmack, Eddy C. (1)
Frey, Karen E. (1)
Moore, Sue E. (1)
Simpson, William R. (1)
Elmendorf, Sarah C. (1)
Myers-Smith, Isla H. (1)
Beck, Pieter S.A. (1)
Blok, Daan (1)
Hollister, Robert D. (1)
Schaepman-Strub, Gab ... (1)
Thomas, Haydn J.D. (1)
Wipf, Sonja (1)
Angers-Blondin, Sand ... (1)
Bjerke, Jarle W. (1)
Box, Jason E. (1)
Colgan, William T. (1)
Brown, Ross (1)
Euskirchen, Eugénie ... (1)
visa färre...
Lärosäte
Lunds universitet (3)
Umeå universitet (2)
Göteborgs universitet (1)
Uppsala universitet (1)
Språk
Engelska (4)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (4)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy