SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bhatti Harrison John) "

Sökning: WFRF:(Bhatti Harrison John)

  • Resultat 1-10 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Glasbey, JC, et al. (författare)
  • 2021
  • swepub:Mat__t
  •  
2.
  •  
3.
  • Bhatti, Harrison John, 1979-, et al. (författare)
  • A Multidimensional Readiness Index for the Electrification of the Transportation System in China, Norway, and Sweden
  • 2023
  • Ingår i: Future Transportation. - Basel : MDPI. - 2673-7590. ; 3:4, s. 1360-1384
  • Tidskriftsartikel (refereegranskat)abstract
    • The main objective of this paper is to develop a readiness index model that can serve as an analytical tool for exploring the achievements of the electrification of transportation systems. We have applied this readiness index model to evaluate the readiness positioning of China, Norway, and Sweden towards transportation electrification. We have chosen these three countries as they represent diversity among countries adopting electric transportation system solutions. Our developed readiness index model has four key dimensions: technological readiness, political readiness, societal readiness, and economic readiness. The embeddedness of all four dimensions in one model provides a multi-perspective way of analyzing and evaluating the readiness levels of countries moving towards transforming their transportation system. Therefore, we named the model a “multidimensional readiness index”. Our main conclusions are that political processes and decisiveness are the most important factors, followed by societal needs and economic ability, with the current technology as the fourth. Without the participation of dedicated and determined political decision makers, the other three factors are challenging to obtain. Political decision makers need to facilitate economic means to support the transformation in society and affected industries to balance the economic disadvantages of the electrically powered vehicle systems until they pass the cost disadvantage turning point. The development of relevant technology is no longer the significant barrier it was at the beginning of this transformation about 20 years ago. The technology for electrically powered transportation systems and devices is widely available now, although it is continuously evolving and being improved. Associated industries cannot be expected to initiate, finance, take risks, and take the lead in this global societal transformation without clear and strong political support.
  •  
4.
  • Bhatti, Harrison John, 1979-, et al. (författare)
  • A System Approach to Electrification of Transportation – An International Comparison
  • 2022
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • Globally, the transportation system is transforming from a fossil-based to an electrification system. Some countries are leading in the transformation process. Some countries are rapidly catching up to become market leaders in developing and introducing new techniques and equipment that support the transformation process in their countries. In contrast, others are still relying on their old fossil-based system or could not have enough understanding of how to deal with this complex transformation of the transportation system.The electrification of the transportation system is not an isolated system that can be handled as a single technological element. It is a group of multiple technologies, political, societal, and economic sub-systems each of these sub-systems is embedded in each other, forming the whole system. Therefore, it is important to see and manage the system from a holistic perspective to transform the transportation electrification system efficiently. We have selected eight countries from three different continents – Asia (China, India), Australia, which is a country and continent, and Europe (Germany, Norway, Slovenia, Sweden, and the UK) to explore the transformational process of transportation electrification based on each countries’ conditions. We have chosen these continents as they are diversified in adopting transportation electrification system solutions.Our main conclusions are that the political processes and political decisiveness are the most important, followed by the societal and economic, with technology as the fourth. The other three are difficult to obtain without dedicated and determined political decision-makers. Political decision-makers need to use economic means to support the transformation in society and industry to balance the economic disadvantage of electric systems until they pass the cost disadvantage turning point. Technology is no longer a significant barrier as it was about 20 years ago. Now, technology is available, although it can be improved. The important part is to understand how to utilize the existing technology efficiently to transform the old fossil-based transportation system into new electrification of the transportation system. Without clear and strong political support, the industry cannot be expected to initiate, finance, take risks, and take the lead in this global societal transformation.Our analysis shows that China is being positioned as the leading country in the world in the electrification of the transportation system because of the strong technological advancements, control of the entire value chain, strong government decisiveness, and execution power in developing and implementing favorable electric vehicle (EV) policies, the willingness of the public sector to take the lead and citizens support to adopt clean technology. Norway has rapidly become one of the newcomers with large numbers of registered electric vehicles according to its population size within a few years, despite lacking manufacturing electric vehicles (EVs) and equipment for transportation electrification. Germany is leading in the technological sector of transportation electrification within Europe with its prestigious top-selling electric vehicle brands in Germany, such as Volkswagen, Mercedes Benz, BMW, Smart, and Audi, and establishing a battery Gigafactory with an annual potential production capacity of 60 GWh. However, Germany is still lagging behind from the societal perspective of not having enough sales of electric vehicles compared to gasoline-based vehicles. Sweden is a rapidly growing country in the electrification of transport, with three vehicle manufacturers introducing EVs in 2021 and developing electric roads system for more than ten years. Sweden is also working on establishing a new 50 GWh battery manufacturing plant in Gothenburg, Sweden. The UK is also catching up with its other European countries in transforming the transportation system with its strong government support. The British government has kept transportation electrification on its national agenda and considering building a Gigafactory to obtain a position as a future battery leader. However, the UK's adoption rate of electric vehicles is still slow compared to fossil-based vehicles. India, Australia, and Slovenia are far behind in the process of transportation transformation than China, Norway, Germany, Sweden, and the UK. One of the common reasons in all these countries is their governments' baby steps even though they have high ambitions. Their governments require a revolutionized and systems approach to enable remarkable change in the transformation process.
  •  
5.
  • Bhatti, Harrison John, 1979-, et al. (författare)
  • Business Model Innovation Approach for Commercializing Smart Grid Systems
  • 2018
  • Ingår i: American Journal of Industrial and Business Management. - USA : Scientific Research Publishing. - 2164-5167 .- 2164-5175. ; 8:9, s. 2007-2051
  • Tidskriftsartikel (refereegranskat)abstract
    • To investigate the reasons for shifting from the old to the new energy system, the impact of this disruptive technology on energy providing firms, the demand for the new business model and the approach of the new business model in terms of creating and capturing values published peer-reviewed articles, and international energy agency reports have been reviewed. This paper encourages energy providing firms to redesign business models for commercializing new energy distribution system and to offer new services to the energy consumers for their future survival in the new trends of the energy market. These services include integrating with renewable energy sources, electric vehicle services, and demand response services to create more value for the consumers and in return gains more profit for each actor.The services provided through integration of renewable energy with smart grid and the electric vehicle will empower consumers involvement in the electricity system which will give them more control over electricity. CO2 production will be reduced, helping to create a clean environment and will enable operators to improve grid security and network stability. Finally, demand response services will provide multiple electricity package options to the consumers in which they can select an appropriate package according to their need which will give them more control over their electricity bill. System operators can optimize their grid operations to provide better power quality, and service providers can increase their income by offering additional services.
  •  
6.
  • Bhatti, Harrison John, 1979-, et al. (författare)
  • Electric Roads : Energy Supplied by Local Renewable Energy Sources and Microgrid Distribution System
  • 2019
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • The electric road system is an emerging concept in this modern era. The advancement of technology has made it possible to give this concept a real shape (electric road system). However, the energy provided to the electric roads is still produced by non-renewable energy sources, which are completely unhealthy and harmful for society. Furthermore, the traditional grid is not suited to integrate with decentralized/localized energy generation and distribution systems. It is an ineffectual and environmentally extravagant system. Therefore, the preliminary contribution of this research is to introduce a decentralized/localized energy generation system based on renewable energy sources and energy distribution to electric roads through the emerging technology of microgrid and smart grid systems, which have the capability to integrate with renewable energy sources easily. Thus, producing electricity with renewable energy sources is environmentally friendly, less expensive, and available without charges. However, each source of energy has some environmental impacts and cost differences. A brief description of the environmental and cost impact of renewable energy sources (wind, solar) is also presented. 
  •  
7.
  • Bhatti, Harrison John, 1979-, et al. (författare)
  • Making the World More Sustainable : Enabling Localized Energy Generation and Distribution on Decentralized Smart Grid Systems
  • 2018
  • Ingår i: World Journal of Engineering and Technology. - Irvine, CA : Scientific Research Publishing. - 2331-4249 .- 2331-4222. ; 6:2, s. 350-382
  • Tidskriftsartikel (refereegranskat)abstract
    • The peer-reviewed articles and published government reports have been reviewed, based on the analysis of technical characteristics of power generation systems, eco-friendly sources of power generations, cost reduction, functionality and design of traditional grid versus smart grid. Furthermore, the innovative technologies that enable the grid to integrate with decentralized power generation system efficiently have been considered. This paper claims that in this modern era, it is arduous for traditional grid to fulfill the rising demand of electricity, along with sustainable, eco-friendly and stable power supply, as it cannot be efficiently integrated with decentralized and localized power generation systems and renewable energy sources. The result of this paper shows that decentralized and localized power generation systems are located close to end-users which decrease the transmission and supply cost of electricity. Innovative technologies allow the decentralized and localized power generation systems to be integrated with renewable energy sources which help to reduce the cost of utility services and provide clean energy.
  •  
8.
  • Bhatti, Harrison John, et al. (författare)
  • Multidimensional Readiness Index for Electrification of Transportation System in China, Norway, and Sweden
  • 2022
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    •  The main objective of this paper is to develop a readiness index model that can serve as an analytical tool for exploring the achievements of electrification of transportation systems. We have applied this readiness index model to evaluate the readiness positioning of China, Norway, and Sweden towards transport electrification. We have chosen these three countries as they represent diversity among countries that are in the process of adopting electrified transport system solutions. Our developed readiness index model has four key dimensions, technological readiness, political readiness, societal readiness, and economic readiness. The embeddedness of all four dimensions in one model provides a multi-perspective way of analyzing and evaluating the readiness levels of countries moving towards transforming the transportation system. Therefore, we named the model a“multidimensional readiness index.”Our main conclusions are that the political processes and political decisiveness involved are the most important factors followed by the societal needs and economic ability, with the current technology available as the fourth. Without the participation of dedicated and determined political decision-makers being involved, the other three factors are challenging to obtain. Political decision-makers need to facilitate the use of economic means to support the transformation in the society and affected industries to balance the initial economic disadvantages of the electrically-powered systems until they pass the cost disadvantage turning point. The development of the relevant technology is no longer a great barrier as it was at the beginning of this transformation, about 20 years ago. The technology for electrically powered transportation systems and devices is widely available now, although it is continuously evolving and being improved. Associated industries cannot be expected to initiate, finance, take the risk, and take the lead in this global societal transformation without clear and strong political support.Based on our multidimensional readiness index analysis, China is being positioned as the leading country in the world in the electrification of its transportation systems. This is mainly so because of the strong technology advancements, control of the entire value chain of research, development (R&D), and manufacturing of EVs, strong government decisiveness, and execution power in developing and implementing favorable electric vehicle (EV) policies. The willingness of China’s public sector to take the lead and their citizen’s support to adopt clean technology are additional factors facilitating this advancement. Norway has rapidly become one of the newcomers in electrification with large numbers of registered electric vehicles, despite lacking manufacturing industries of electric vehicles. Sweden is a rapidly developing country in the electrification of transport, with three vehicle manufacturers introducing EVs in 2021. The government has been committed to building demonstration sites for electric roads systems for more than ten years. Sweden is also working on establishing battery manufacturing facilities dedicated to the needs of electrified transportation equipment and systems. 
  •  
9.
  • Bhatti, Harrison John, 1979- (författare)
  • Sustainable Electromobility : A System Approach to Transformation of Transportation
  • 2023
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This thesis aims to explore, analyze, and develop knowledge that leads to an understanding of identifying the key actors and their symbiotic relationships and dependencies in transforming the energy and transportation system from fossil-based to renewable and fossil fuel-powered vehicles to electric. The research was explorative and categorized into two studies. The Study – I focuses on the technological development that leads toward transforming from the old fossil-based analog electricity generation and distribution system to the new digitalized renewable system. This study further explores the impact of these disruptive technologies on the market and society, and the challenges hindering the implementation and adoption of the new energy system. Study – II focuses on developing new knowledge and understanding by integrating technological, political, societal, and economic aspects into one model and named it a 'multidimensional readiness index model.' This model can serve as an analytical tool and provide a broader perspective for exploring, analyzing, evaluating, and determining the countries' positions in transforming the transformation system. The model has been applied to eight countries, two from Asia (China and India) and Australia and five from Europe (Germany, Norway, Sweden, Slovenia, and the UK). The kappa synthesizes the exploration of the papers. Additionally, the system approach is applied to explore and understand the symbiotic relationship in the new ecosystem among the key actors and stakeholders and their significant role in transforming the transportation system from fossil-based to electric. The main conclusion is that the countries with a higher symbiotic relationship among the key actors achieved a higher level of readiness in transforming the transportation system. In contrast, other countries with a low symbiotic relationship among the key actors are slowly catching up or even far behind in transforming the transportation system towards electrification.
  •  
10.
  • Fu, Jiali, 1973-, et al. (författare)
  • Locating charging infrastructure for freight transport using multiday travel data
  • 2024
  • Ingår i: Transport Policy. - London : Elsevier. - 0967-070X .- 1879-310X. ; 152, s. 21-28
  • Tidskriftsartikel (refereegranskat)abstract
    • Vehicle electrification has shown the potential to reduce environmental impacts and greenhouse gas emissions from the transport sector. As electric vehicles (EVs) become increasingly prominent, the efficient placement of charging infrastructure poses a complex challenge that demands careful consideration. This paper delves into the investigation of how travel and parking patterns, derived from empirical data on freight vehicles, influence the optimal distribution of charging infrastructure across the freight network. This paper presents a node-based approach to optimize the allocation of charging infrastructure tailored explicitly for freight transport. The study identifies optimal locations for operator-owned charging infrastructure by leveraging GPS-based data collected from a fleet of freight vehicles operating in the greater Gothenburg metropolitan area. This research aims to enhance our understanding of the charging infrastructure requirements inherent in the freight transport system and provide decision support to logistics companies contemplating the shift from conventional fossil fuel vehicles to electric freight vehicles. The proposed model holds the potential for seamless adaptation to diverse freight transport systems, offering valuable insights to expedite the transition toward fossil-free freight transport on a broader scale. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy