SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bianco Federica Research Scientist) "

Sökning: WFRF:(Bianco Federica Research Scientist)

  • Resultat 1-1 av 1
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fremling, Christoffer, 1984- (författare)
  • Stripped-envelope supernovae discovered by the Palomar Transient Factory
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This thesis is based on research made by the intermediate Palomar Transient Factory [(i)PTF]. The focus is on stripped-envelope (SE) supernovae (SNe) discovered by (i)PTF, and it is closely tied to the research on the SE SN iPTF13bvn, that occurred in the nearby galaxy NGC 5806. This SN was initially thought to have been the explosion of a very massive Wolf-Rayet star, but we have shown that this is very likely not the case. We suggest instead that iPTF13bvn originated from a binary system where the envelope was stripped off from the SN progenitor by tidal forces from a companion (Paper I). PTF12os exploded in the same galaxy as iPTF13bvn, and our analysis shows that PTF12os and  iPTF13bvn were very similar, and that both were also remarkably similar to the Type IIb SN 2011dh, in terms of their light-curves and spectra. In Paper II, hydrodynamical models were used to constrain the explosion parameters of iPTF13bvn, PTF12os and SN 2011dh; finding 56Ni masses in the range 0.063-0.075 solar masses (Ms), ejecta masses in the range 1.85-1.91 Ms, and kinetic energies in the range 0.54-0.94 x 1051 erg. Furthermore, using nebular models and late-time spectroscopy we were able to constrain the Zero-Age Main Sequence (ZAMS) mass to ~ 12 Ms, for iPTF13bvn and ≤ 15 Ms for PTF12os. In current stellar evolution models, stars with these masses on the ZAMS cannot lose their envelopes and become SE SNe without binary interactions. In Paper III we investigate a peculiar SE SN, iPTF15dtg; this SN lacks both hydrogen and helium and shows a double-peaked LC with a broad main LC peak. Using hydrodynamical modeling we show that iPTF15dtg had a very large ejecta mass (~ 10 Ms), resulting from an explosion of a very massive star (~ 35 Ms). The initial peak in the LC can be explained by the presence of extended material around the star, likely due to an episode of strong mass-loss experienced by the progenitor prior to the explosion. In Paper IV we perform a statistical study of the spectra of all 176 SE SNe (Type IIb, Ib and Ic) discovered by (i)PTF. The spectra of Type Ic SNe show O absorption features that are both stronger and broader (indicating faster expansion velocities) compared to Type IIb and Type Ib SNe. These findings along with very weak He absorption support the traditional picture with Type Ic SNe being heavily stripped of their He envelopes prior to the explosions, and argue against alternative explanations, such as differences in explosive mixing of 56Ni among the SE SN subtypes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-1 av 1
Typ av publikation
doktorsavhandling (1)
Typ av innehåll
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Sollerman, Jesper, P ... (1)
Fremling, Christoffe ... (1)
Bianco, Federica, Re ... (1)
Lärosäte
Stockholms universitet (1)
Språk
Engelska (1)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (1)
År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy