SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Bieder A) "

Search: WFRF:(Bieder A)

  • Result 1-9 of 9
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Gonze, X., et al. (author)
  • Recent developments in the ABINIT software package
  • 2016
  • In: Computer Physics Communications. - : Elsevier BV. - 0010-4655. ; 205, s. 106-131
  • Journal article (peer-reviewed)abstract
    • ABINIT is a package whose main program allows one to find the total energy, charge density, electronic structure and many other properties of systems made of electrons and nuclei, (molecules and periodic solids) within Density Functional Theory (DFT), Many-Body Perturbation Theory (GW approximation and Bethe-Salpeter equation) and Dynamical Mean Field Theory (DMFT). ABINIT also allows to optimize the geometry according to the DFT forces and stresses, to perform molecular dynamics simulations using these forces, and to generate dynamical matrices, Born effective charges and dielectric tensors. The present paper aims to describe the new capabilities of ABINIT that have been developed since 2009. It covers both physical and technical developments inside the ABINIT code, as well as developments provided within the ABINIT package. The developments are described with relevant references, input variables, tests and tutorials. Program summary: . Program title: ABINIT. . Catalogue identifier: AEEU_v2_0. . Program summary URL: . http://cpc.cs.qub.ac.uk/summaries/AEEU_v2_0.html . . Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland. . Licensing provisions: GNU General Public License, version 3. . No. of lines in distributed program, including test data, etc.: 4845789. . No. of bytes in distributed program, including test data, etc.: 71340403. . Distribution format: tar.gz. . Programming language: Fortran2003, PERL scripts, Python scripts. . Classification: 7.3, 7.8. . External routines: (all optional) BigDFT [2], ETSF_IO [3], libxc [4], NetCDF [5], MPI [6], Wannier90 [7], FFTW [8]. . Catalogue identifier of previous version: AEEU_v1_0. . Journal reference of previous version: Comput. Phys. Comm. 180 (2009) 2582. . Does the new version supersede the previous version?: Yes. The abinit-7.10.5 version is now the up to date stable version of ABINIT. . Nature of problem: . This package has the purpose of computing accurately material and nanostructure properties: electronic structure, bond lengths, bond angles, primitive cell size, cohesive energy, dielectric properties, vibrational properties, elastic properties, optical properties, magnetic properties, non-linear couplings, electronic and vibrational life-times, and others. . Solution method: . Software application based on Density Functional Theory, Many-Body Perturbation Theory and Dynamical Mean Field Theory, pseudopotentials, with plane waves or wavelets as basis functions. . Reasons for new version: . Since 2009, the abinit-5.7.4 version of the code has considerably evolved and is not yet up to date. The abinit- 7.10.5 version contains new physical and technical features that allow electronic structure calculations impossible to carry out in the previous versions. . Summary of revisions: . •new physical features: quantum effects for the nuclei treated by the Path-integral Molecular Dynamics; finding transition states using image dynamics (NEB or string methods); two component DFT for electron-positron annihilation; linear response in a Projector Augmented-Wave approach -PAW-, electron-phonon interactions and temperature dependence of the gap; Bethe Salpeter Equation -BSE-; Dynamical Mean Field Theory (DMFT).•new technical features: development of a PAW approach for a wavelet basis; parallelisation of the code on more than 10,000 processors; new build system.•new features in the ABINIT package: tests; test farm; new tutorials; new pseudopotentials and PAW atomic data tables; GUI and postprocessing tools like the AbiPy and APPA libraries. . Running time: . It is difficult to answer to the question as the use of ABINIT is very large. On one hand, ABINIT can run on 10,000 processors for hours to perform quantum molecular dynamics on large systems. On the other hand, tutorials for students can be performed on a laptop within a few minutes. . References: . 1 http://www.gnu.org/copyleft/gpl.txt 2 http://bigdft.org 3 http://www.etsf.eu/fileformats 4 http://www.tddft.org/programs/octopus/wiki/index.php/Libxc 5 http://www.unidata.ucar.edu/software/netcdf 6 https://en.wikipedia.org/wiki/Message_Passing_Interface 7 http://www.wannier.org 8M. Frigo and S.G. Johnson, Proceedings of the IEEE, 93, 216-231 (2005). . .
  •  
2.
  • Yu, NY, et al. (author)
  • Acute doses of caffeine shift nervous system cell expression profiles toward promotion of neuronal projection growth
  • 2017
  • In: Scientific reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 7:1, s. 11458-
  • Journal article (peer-reviewed)abstract
    • Caffeine is a widely consumed psychoactive substance, but little is known about the effects of caffeine stimulation on global gene expression changes in neurons. Here, we conducted gene expression profiling of human neuroepithelial stem cell-derived neurons, stimulated with normal consumption levels of caffeine (3 μM and 10 μM), over a period of 9 h. We found dosage-dependent activation of immediate early genes after 1 h. Neuronal projection development processes were up-regulated and negative regulation of axon extension processes were down-regulated at 3 h. In addition, genes involved in extracellular matrix organization, response for wound healing, and regulation of immune system processes were down-regulated by caffeine at 3 h. This study identified novel genes within the neuronal projection guidance pathways that respond to acute caffeine stimulation and suggests potential mechanisms for the effects of caffeine on neuronal cells.
  •  
3.
  • Bieder, A, et al. (author)
  • Dyslexia Candidate Gene and Ciliary Gene Expression Dynamics During Human Neuronal Differentiation
  • 2020
  • In: Molecular neurobiology. - : Springer Science and Business Media LLC. - 1559-1182 .- 0893-7648. ; 57:7, s. 2944-2958
  • Journal article (peer-reviewed)abstract
    • Developmental dyslexia (DD) is a neurodevelopmental condition with complex genetic mechanisms. A number of candidate genes have been identified, some of which are linked to neuronal development and migration and to ciliary functions. However, expression and regulation of these genes in human brain development and neuronal differentiation remain uncharted. Here, we used human long-term self-renewing neuroepithelial stem (lt-NES, here termed NES) cells derived from human induced pluripotent stem cells to study neuronal differentiation in vitro. We characterized gene expression changes during differentiation by using RNA sequencing and validated dynamics for selected genes by qRT-PCR. Interestingly, we found that genes related to cilia were significantly enriched among upregulated genes during differentiation, including genes linked to ciliopathies with neurodevelopmental phenotypes. We confirmed the presence of primary cilia throughout neuronal differentiation. Focusing on dyslexia candidate genes, 33 out of 50 DD candidate genes were detected in NES cells by RNA sequencing, and seven candidate genes were upregulated during differentiation to neurons, including DYX1C1 (DNAAF4), a highly replicated DD candidate gene. Our results suggest a role of ciliary genes in differentiating neuronal cells and show that NES cells provide a relevant human neuronal model to study ciliary and DD candidate genes.
  •  
4.
  •  
5.
  •  
6.
  • Hailesilassie, Biruk Wobeshet, et al. (author)
  • New experimental methods for characterizing formation and decay of foam bitumen
  • 2015
  • In: Materials and Structures. - : Springer Science and Business Media LLC. - 1359-5997 .- 1871-6873.
  • Journal article (peer-reviewed)abstract
    • Formation and decay of foam bitumen is a highly dynamic temperature dependent process which makes characterization difficult. In this research, new experimental tools were applied for characterizing the bitumen foam during the foaming process. Ultrasonic sensors were used for accurately monitoring the expansion and decay of foam bitumen as a function of time. Assessment of foam bitumen viscosity was performed using high frequency torsional rheometer and in situ observation by X-ray radiography. A high-speed camera was applied for examining the foam bitumen stream right at the nozzle revealing that foam bitumen at a very early stage contains fragmented pieces of irregular size rather resembling a liquid than foam. Moreover, infrared thermal images were taken for obtaining information on the in situ surface temperature of foam bitumen during the hot foaming process. The result showed that the average surface temperature of foam bitumen depends on the water content of the bitumen and bubble size distribution, 108 and 126 °C for 4 and 1 wt% (by weight) water content respectively. The residual water content in the decaying foam bitumen was determined by thermogravimetric analysis. The result demonstrated that residual water content depends on the initial water content, and was found to be between 38 and 48 wt% of the initial water content of 4–6 wt%. Finally, X-ray computed tomography was applied for examining the decay of foam bitumen revealing that the bubbles of foam bitumen remain trapped close to the surface of the foam bitumen.
  •  
7.
  •  
8.
  • Romero, Aldo H., et al. (author)
  • ABINIT: Overview and focus on selected capabilities
  • 2020
  • In: Journal of Chemical Physics. - : AIP Publishing. - 1089-7690 .- 0021-9606. ; 152:12
  • Research review (peer-reviewed)abstract
    • abinit is probably the first electronic-structure package to have been released under an open-source license about 20 years ago. It implements density functional theory, density-functional perturbation theory (DFPT), many-body perturbation theory (GW approximation and Bethe-Salpeter equation), and more specific or advanced formalisms, such as dynamical mean-field theory (DMFT) and the "temperature-dependent effective potential" approach for anharmonic effects. Relying on planewaves for the representation of wavefunctions, density, and other space-dependent quantities, with pseudopotentials or projector-augmented waves (PAWs), it is well suited for the study of periodic materials, although nanostructures and molecules can be treated with the supercell technique. The present article starts with a brief description of the project, a summary of the theories upon which abinit relies, and a list of the associated capabilities. It then focuses on selected capabilities that might not be present in the majority of electronic structure packages either among planewave codes or, in general, treatment of strongly correlated materials using DMFT; materials under finite electric fields; properties at nuclei (electric field gradient, Mössbauer shifts, and orbital magnetization); positron annihilation; Raman intensities and electro-optic effect; and DFPT calculations of response to strain perturbation (elastic constants and piezoelectricity), spatial dispersion (flexoelectricity), electronic mobility, temperature dependence of the gap, and spin-magnetic-field perturbation. The abinit DFPT implementation is very general, including systems with van der Waals interaction or with noncollinear magnetism. Community projects are also described: generation of pseudopotential and PAW datasets, high-throughput calculations (databases of phonon band structure, second-harmonic generation, and GW computations of bandgaps), and the library libpaw. abinit has strong links with many other software projects that are briefly mentioned.
  •  
9.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-9 of 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view