SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bik Arjan) "

Sökning: WFRF:(Bik Arjan)

  • Resultat 1-10 av 24
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Álvarez-Márquez, J., et al. (författare)
  • MIRI/JWST observations reveal an extremely obscured starburst in the z = 6.9 system SPT0311-58
  • 2023
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 671
  • Tidskriftsartikel (refereegranskat)abstract
    • Luminous infrared starbursts in the early Universe are thought to be the progenitors of massive quiescent galaxies identified at redshifts 2–4. Using the Mid-IRfrared Instrument (MIRI) on board the James Webb Space Telescope (JWST), we present mid-infrared sub-arcsec imaging and spectroscopy of such a starburst: the slightly lensed hyper-luminous infrared system SPT0311-58 at z = 6.9. The MIRI IMager (MIRIM) and Medium Resolution Spectrometer (MRS) observations target the stellar (rest-frame 1.26 μm emission) structure and ionised (Paα and Hα) medium on kpc scales in the system. The MIRI observations are compared with existing ALMA far-infrared continuum and [C II]158μm imaging at a similar angular resolution. Even though the ALMA observations imply very high star formation rates (SFRs) in the eastern (E) and western (W) galaxies of the system, the Hα line is, strikingly, not detected in our MRS observations. This fact, together with the detection of the ionised gas phase in Paα, implies very high internal nebular extinction with lower limits (AV) of 4.2 (E) and 3.9 mag (W) as well as even larger values (5.6 (E) and 10.0 (W)) by spectral energy distribution (SED) fitting analysis. The extinction-corrected Paα lower limits of the SFRs are 383 and 230 M⊙ yr−1 for the E and W galaxies, respectively. This represents 50% of the SFRs derived from the [C II]158 μm line and infrared light for the E galaxy and as low as 6% for the W galaxy. The MIRIM observations reveal a clumpy stellar structure, with each clump having 3–5×109 M⊙ mass in stars, leading to a total stellar mass of 2.0 and 1.5×1010 M⊙ for the E and W galaxies, respectively. The specific star formation (sSFR) in the stellar clumps ranges from 25 to 59 Gyr−1, assuming a star formation with a 50–100 Myr constant rate. This sSFR is three to ten times larger than the values measured in galaxies of similar stellar mass at redshifts 6–8. Thus, SPT0311-58 clearly stands out as a starburst system when compared with typical massive star-forming galaxies at similar high redshifts. The overall gas mass fraction is Mgas/M∗ ∼ 3, similar to that of z ∼ 4.5–6 star-forming galaxies, suggesting a flattening of the gas mass fraction in massive starbursts up to redshift 7. The kinematics of the ionised gas in the E galaxy agrees with the known [C II] gas kinematics, indicating a physical association between the ionised gas and the cold ionised or neutral gas clumps. The situation in the W galaxy is more complex, as it appears to be a velocity offset by about +700 km s−1 in the Paα relative to the [C II] emitting gas. The nature of this offset and its reality are not fully established and require further investigation. The observed properties of SPT0311-58, such as the clumpy distribution at sub(kpc) scales and the very high average extinction, are similar to those observed in low- and intermediate-z luminous (E galaxy) and ultra-luminous (W galaxy) infrared galaxies, even though SPT0311-58 is observed only ∼800 Myr after the Big Bang. Such massive, heavily obscured clumpy starburst systems as SPT0311-58 likely represent the early phases in the formation of a massive high-redshift bulge, spheroids and/or luminous quasars. This study demonstrates that MIRI and JWST are, for the first time, able to explore the rest-frame near-infrared stellar and ionised gas structure of these galaxies, even during the Epoch of Reionization.
  •  
2.
  • Bik, Arjan, et al. (författare)
  • Spatially resolved gas and stellar kinematics in compact starburst galaxies
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 666
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The kinematics of galaxies provide valuable insights into their physics and assembly history. Kinematics are governed not only by the gravitational potential, but also by merger events and stellar feedback processes such as stellar winds and supernova explosions.Aims. We aim to identify what governs the kinematics in a sample of SDSS-selected nearby starburst galaxies, by obtaining spatially resolved measurements of the gas and stellar kinematics.Methods. We obtained near-infrared integral-field K-band spectroscopy with VLT/SINFONI for 15 compact starburst galaxies. We derived the integrated as well as spatially resolved stellar and gas kinematics. The stellar kinematics were derived from the CO absorption bands, and Paα and Brγ emission lines were used for the gas kinematics.Results. Based on the integrated spectra, we find that the majority of galaxies have gas and stellar velocity dispersion that are comparable. A spatially resolved comparison shows that the six galaxies that deviate show evidence for a bulge or stellar feedback. Two galaxies are identified as mergers based on their double-peaked emission lines. In our sample, we find a negative correlation between the ratio of the rotational velocity over the velocity dispersion (vrot/σ) and the star formation rate surface density.Conclusions. We propose a scenario where the global kinematics of the galaxies are determined by gravitational instabilities that affect both the stars and gas. This process could be driven by mergers or accretion events. Effects of stellar feedback on the ionised gas are more localised and detected only in the spatially resolved analysis. The mass derived from the velocity dispersion provides a reliable mass even if the galaxy cannot be spatially resolved. The technique used in this paper is applicable to galaxies at low and high redshift with the next generation of infrared-focussed telescopes (JWST and ELT).
  •  
3.
  • Colina, L., et al. (författare)
  • Uncovering the stellar structure of the dusty star-forming galaxy GN20 at z=4.055 with MIRI/JWST
  • 2023
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 673
  • Tidskriftsartikel (refereegranskat)abstract
    • Luminous infrared galaxies at high redshifts (z > 4) include extreme starbursts that build their stellar mass over short periods of time, that is, of 100 Myr or less. These galaxies are considered to be the progenitors of massive quiescent galaxies at intermediate redshifts (z similar to 2) but their stellar structure and buildup is unknown. Here, we present the first spatially resolved near-infrared (rest-frame 1.1 mu m) imaging of GN20, one of the most luminous dusty star-forming galaxies known to date, observed at an epoch when the Universe was only 1.5 Gyr old. The 5.6 mu m image taken with the JWST Mid-Infrared Instrument (MIRI/JWST) shows that GN20 is a very luminous galaxy (M-1.1 mu m,M- AB = 25.01, uncorrected for internal extinction), with a stellar structure composed of a conspicuous central source and an extended envelope. The central source is an unresolved nucleus that carries 9% of the total flux. The nucleus is co-aligned with the peak of the cold dust emission, and offset by 3.9 kpc from the ultraviolet stellar emission. The diffuse stellar envelope is similar in size (3.6 kpc effective radius) to the clumpy CO molecular gas distribution. The centroid of the stellar envelope is offset by 1 kpc from the unresolved nucleus, suggesting GN20 is involved in an interaction or merger event supported by its location as the brightest galaxy in a proto-cluster. Additional faint stellar clumps appear to be associated with some of the UV- and CO-clumps. The stellar size of GN20 is larger by a factor of about 3 to 5 than known spheroids, disks, and irregulars at z similar to 4, while its size and low Sersic index are similar to those measured in dusty, infrared luminous galaxies at redshift 2 of the same mass (similar to 10(11) M-circle dot). GN20 has all the ingredients necessary for evolving into a massive spheroidal quiescent galaxy at intermediate redshift: it is a large, luminous galaxy at z = 4.05 involved in a short and massive starburst centred in the stellar nucleus and extended over the entire galaxy, out to radii of 4 kpc, and likely induced by the interaction or merger with a member of the proto-cluster.
  •  
4.
  • Della Bruna, Lorenza, et al. (författare)
  • Stellar feedback in M 83 as observed with MUSE II. Analysis of the H II region population : Ionisation budget and pre-SN feedback
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 666
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Energy and momentum injected by young, massive stars into the surrounding gas play an important role in regulating further star formation and in determining the galaxy's global properties. Before supernovae begin to explode, stellar feedback consists of two main processes: radiation pressure and photoionisation.Aims. We study pre-supernova feedback and constrain the leakage of Lyman continuum (LyC) radiation in a sample of similar to 4700 H II regions in the nearby spiral galaxy M 83. We explore the impact that the galactic environment and intrinsic physical properties (metallicity, extinction, and stellar content) have on the early phases of H II region evolution.Methods. We combined VLT/MUSE observations of the ionised gas with young star cluster physical properties derived from HST multiwavelength data. We identified H II regions based on their Hα emission, and cross-matched the sample with planetary nebulae and supernova remnants to assess contaminant sources and identify evolved H II regions. We also spectroscopically identified Wolf-Rayet (WR) stars populating the star-forming regions. We estimated the physical properties of the H II regions (luminosity, size, oxygen abundance, and electron density). For each H II region, we computed the pressure of ionised gas (Pion) and the direct radiation pressure (Pdir) acting in the region, and investigated how they vary with galactocentric distance, with the physical properties of the region, and with the pressure of the galactic environment (PDE). For a subset of similar to 500 regions, we also investigated the link between the pressure terms and the properties of the cluster population (age, mass, and LyC flux). By comparing the LyC flux derived from Hα emission with the one modelled from their clusters and WRs, we furthermore constrained any escape of LyC radiation (fesc).Results. We find that Pion dominates over Pdir by at least a factor of 10 on average over the disk. Both pressure terms are strongly enhanced and become almost comparable in the central starburst region. In the disk (R ≥ 0.15Re), we observe that Pdir stays approximately constant with galactocentric distance. We note that Pdir is positively correlated with an increase in radiation field strength (linked to the negative metallicity gradient in the galaxy), while it decreases in low extinction regions, as is expected if the amount of dust to which the momentum can be imparted decreases. In addition, Pion decreases constantly for increasing galactocentric distances; this trend correlates with the decrease in extinction - indicative of more evolved and thus less compact regions - and with changes in the galactic environment (traced by a decrease in PDE). In general, we observe that H II regions near the centre are underpressured with respect to their surroundings, whereas regions in the rest of the disk are overpressured and hence expanding. We find that regions hosting younger clusters or those that have more mass in young star clusters have a higher internal pressure, indicating that clustered star formation likely plays a dominant role in setting the pressure. Finally, we estimate that only 13% of H II regions hosting young clusters and WR stars have fesc ≥ 0, which suggests that star formation taking place outside young clusters makes a non-negligible contribution to ionising H II regions.
  •  
5.
  •  
6.
  • Della Bruna, Lorenza, et al. (författare)
  • Stellar feedback in M83 as observed with MUSE I. Overview, an unprecedented view of the stellar and gas kinematics and evidence of outflowing gas
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 660
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Young massive stars inject energy and momentum into the surrounding gas, creating a multi-phase interstellar medium (ISM) and regulating further star formation. The main challenge of studying stellar feedback proves to be the variety of scales spanned by this phenomenon, ranging from the immediate surrounding of the stars (H II regions, 10s pc scales) to galactic-wide kiloparsec scales.Aims. We present a large mosaic (3.8 × 3.8 kpc) of the nearby spiral galaxy M83, obtained with the MUSE instrument at ESO Very Large Telescope. The integral field spectroscopy data cover a large portion of the optical disk at a resolution of ∼20 pc, allowing the characterisation of single H II regions while sampling diverse dynamical regions in the galaxy.Methods. We obtained the kinematics of the stars and ionised gas, and compared them with molecular gas kinematics observed in CO(2-1) with the ALMA telescope array. We separated the ionised gas into H II regions and diffuse ionised gas (DIG) and investigated how the fraction of Hα luminosity originating from the DIG (fDIG) varies with galactic radius.Results. We observe that both stars and gas trace the galactic disk rotation, as well as a fast-rotating nuclear component (30″ ≃ 700 pc in diameter), likely connected to secular processes driven by the galactic bar. In the gas kinematics, we observe a stream east of the nucleus (50″ ≃ 1250 pc in size), redshifted with respect to the disk. The stream is surrounded by an extended ionised gas region (1000 × 1600 pc) with enhanced velocity dispersion and a high ionisation state, which is largely consistent with being ionised by slow shocks. We interpret this feature as either the superposition of the disk and an extraplanar layer of DIG, or as a bar-driven inflow of shocked gas. A double Gaussian component fit to the Hα line also reveals the presence of a nuclear biconic structure whose axis of symmetry is perpendicular to the bar. The two cones (20″ ≃ 500 pc in size) appear blue- and redshifted along the line of sight. The cones stand out for having an Hα emission separated by up to 200 km s−1 from that of the disk, and a high velocity dispersion ∼80–200 km s−1. At the far end of the cones, we observe that the gas is consistent with being ionised by shocks. These features had never been observed before in M83; we postulate that they are tracing a starburst-driven outflow shocking into the surrounding ISM. Finally, we obtain fDIG ∼ 13% in our field of view, and observe that the DIG contribution varies radially between 0.8 and 46%, peaking in the interarm region. We inspect the emission of the H II regions and DIG in ‘BPT’ diagrams, finding that in H II regions photoionisation accounts for 99.8% of the Hα flux, whereas the DIG has a mixed contribution from photoionisation (94.9%) and shocks (5.1%).
  •  
7.
  • Della Bruna, Lorenza, et al. (författare)
  • Studying the ISM at ∼10 pc scale in NGC 7793 with MUSE : I. Data description and properties of the ionised gas
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 635
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Studies of nearby galaxies reveal that around 50% of the total H alpha luminosity in late-type spirals originates from diffuse ionised gas (DIG), which is a warm, diffuse component of the interstellar medium that can be associated with various mechanisms, the most important ones being leaking HII regions, evolved field stars, and shocks.Aims. Using MUSE Wide Field Mode adaptive optics-assisted data, we study the condition of the ionised medium in the nearby (D=3.4 Mpc) flocculent spiral galaxy NGC 7793 at a spatial resolution of similar to 10 pc. We construct a sample of HII regions and investigate the properties and origin of the DIG component.Methods. We obtained stellar and gas kinematics by modelling the stellar continuum and fitting the H alpha emission line. We identified the boundaries of resolved HII regions based on their H alpha surface brightness. As a way of comparison, we also selected regions according to the H alpha/[SII] line ratio; this results in more conservative boundaries. Using characteristic line ratios and the gas velocity dispersion, we excluded potential contaminants, such as supernova remnants (SNRs) and planetary nebulae (PNe). The continuum subtracted HeII map was used to spectroscopically identify Wolf Rayet stars (WR) in our field of view. Finally, we computed electron densities and temperatures using the line ratio [SII]6716/6731 and [SIII]6312/9069, respectively. We studied the properties of the ionised gas through BPT emission line diagrams combined with velocity dispersion of the gas.Results. We spectroscopically confirm two previously detected WR and SNR candidates and report the discovery of the other seven WR candidates, one SNR, and two PNe within our field of view. The resulting DIG fraction is between similar to 27 and 42% depending on the method used to define the boundaries of the HII regions (flux brightness cut in H alpha = 6.7x10(-18) erg s(-1) cm(-2) or H alpha/[SII] = 2.1, respectively). In agreement with previous studies, we find that the DIG exhibits enhanced [SII]/H alpha and [NII]/H alpha ratios and a median temperature that is similar to 3000 K higher than in HII regions. We also observe an apparent inverse correlation between temperature and H alpha surface brightness. In the majority of our field of view, the observed [SII]6716/6731 ratio is consistent within 1 sigma with n(e)< 30 cm(-3), with an almost identical distribution for the DIG and HII regions. The velocity dispersion of the ionised gas indicates that the DIG has a higher degree of turbulence than the HII regions. Comparison with photoionisation and shock models reveals that, overall, the diffuse component can only partially be explained via shocks and that it is most likely consistent with photons leaking from density bounded HII regions or with radiation from evolved field stars. Further investigation will be conducted in a follow-up paper.
  •  
8.
  • Della Bruna, Lorenza, et al. (författare)
  • Studying the ISM at ∼10 pc scale in NGC 7793 with MUSEII : Constraints on the oxygen abundance and ionising radiation escape (Corrigendum)
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 663
  • Tidskriftsartikel (refereegranskat)abstract
    • Table 3 in the original paper reports inaccurate values of Q0exp;YSC and Q0obs(and hence of the related quantities Qexp;tot, Qexptot=Qobs, and fesc). The error in Q0exp;YSC results from a mistake in the sampling of the cluster probability distribution functions (PDFs), whereas Q0obswas mistakenly computed from non-dereddened values of L(Hα). In Table 1 we provide a revised version of the original Table 3, and in Figs. 1 and 2 we show revised versions of the original Figs. 10 and 11. The revised values do not change any of the conclusions stated in the original paper. In the following we provide revised text for the affected sections. (Figure Presented). 
  •  
9.
  • Della Bruna, Lorenza, et al. (författare)
  • Studying the ISM at similar to 10 pc scale in NGC 7793 with MUSE : II. Constraints on the oxygen abundance and ionising radiation escape
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 650
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Feedback from massive stars a ffects the interstellar medium (ISM) from the immediate surroundings of the stars (parsec scales) to galactic (kiloparsec) scales. High-spatial resolution studies of H ii regions are critical to investigate how this mechanism operates.Aims. We study the ionised ISM in NGC7793 with the MUSE instrument at ESO Very Large Telescope (VLT), over a field of view (FoV) of similar to 2 kpc2 and at a spatial resolution of similar to 10 pc. The aim is to link the physical conditions of the ionised gas (reddening, ionisation status, abundance measurements) within the spatially resolved H ii regions to the properties of the stellar populations producing Lyman continuum photons.Methods. The analysis of the MUSE dataset, which provides a map of the ionised gas and a census of Wolf Rayet stars, is complemented with a sample of young star clusters (YSCs) and O star candidates observed with the Hubble Space Telescope (HST) and of giant molecular clouds traced in CO(2-1) emission with the Atacama Large Millimeter /submillimeter Array (ALMA). We estimated the oxygen abundance using a temperature-independent strong-line method. We determined the observed total amount of ionising photons ( Q(H0)) from the extinction corrected H ff luminosity. This estimate was then compared to the expected Q(H0) obtained by summing the contributions of YSCs and massive stars. The ratio of the two values gives an estimate for the escape fraction ( fesc) of photons in the region of interest. We used the [S ii] /[O iii] ratio as a proxy for the optical depth of the gas and classified H ii regions into ionisation bounded, or as featuring channels of optically thin gas. We compared the resulting ionisation structure with the computed fesc. We also investigated the dependence of fesc on the age spanned by the stellar population in each region.Results. We find a median oxygen abundance of 12 + log (O =H) similar to 8 :37, with a scatter of 0.25 dex, which is in agreement with previous estimates for our target. We furthermore observe that the abundance map of H ii regions is rich in substructures, surrounding clusters and massive stars, although clear degeneracies with photoionisation are also observed. From the population synthesis analysis, we find that YSCs located in H ii regions have a higher probability of being younger and less massive as well as of emitting a higher number of ionising photons than clusters in the rest of the field. Overall, we find fesc;H ii = 0:67+0:08 0:12 for the population of H ii regions. We also conclude that the sources of ionisation observed within the FoV are more than su fficient to explain the amount of di ffuse ionised gas (DIG) observed in this region of the galaxy. We do not observe a systematic trend between the visual appearance of H ii regions and fesc, pointing to the e ffect of 3D geometry in the small sample probed.
  •  
10.
  • Herenz, E. C., et al. (författare)
  • A ∼15 kpc outflow cone piercing through the halo of the blue compact metal-poor galaxy SBS 0335–052E
  • 2023
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 670
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Outflows from low-mass star-forming galaxies are a fundamental ingredient for models of galaxy evolution and cosmology. Despite seemingly favourable conditions for outflow formation in compact starbursting galaxies, convincing observational evidence for kiloparsec-scale outflows in such systems is scarce.Aims. The onset of kiloparsec-scale ionised filaments in the halo of the metal-poor compact dwarf SBS 0335−052E was previously not linked to an outflow. In this paper we investigate whether these filaments provide evidence for an outflow.Methods. We obtained new VLT/MUSE WFM and deep NRAO/VLA B-configuration 21 cm data of the galaxy. The MUSE data provide morphology, kinematics, and emission line ratios of Hβ/Hα and [O III]λ5007/Hα of the low surface-brightness filaments, while the VLA data deliver morphology and kinematics of the neutral gas in and around the system. Both datasets are used in concert for comparisons between the ionised and the neutral phase.Results. We report the prolongation of a lacy filamentary ionised structure up to a projected distance of 16 kpc at SBHα = 1.5 × 10−18 erg s cm−2 arcsec−2. The filaments exhibit unusual low Hα/Hβ ≈ 2.4 and low [O III]/Hα ∼ 0.4 − 0.6 typical of diffuse ionised gas. They are spectrally narrow (∼20 km s−1) and exhibit no velocity sub-structure. The filaments extend outwards from the elongated H I halo. On small scales, the NHI peak is offset from the main star-forming sites. The morphology and kinematics of H I and H II reveal how star-formation-driven feedback interacts differently with the ionised and the neutral phase.Conclusions. We reason that the filaments are a large-scale manifestation of star-formation- driven feedback, namely limb-brightened edges of a giant outflow cone that protrudes through the halo of this gas-rich system. A simple toy model of such a conical structure is found to be commensurable with the observations.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 24

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy