SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bill Roslyn M.) "

Sökning: WFRF:(Bill Roslyn M.)

  • Resultat 1-10 av 23
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kitchen, Philip, et al. (författare)
  • Targeting Aquaporin-4 Subcellular Localization to Treat Central Nervous System Edema
  • 2020
  • Ingår i: Cell. - : Elsevier BV. - 0092-8674. ; 181:4, s. 19-799
  • Tidskriftsartikel (refereegranskat)abstract
    • Swelling of the brain or spinal cord (CNS edema) affects millions of people every year. All potential pharmacological interventions have failed in clinical trials, meaning that symptom management is the only treatment option. The water channel protein aquaporin-4 (AQP4) is expressed in astrocytes and mediates water flux across the blood-brain and blood-spinal cord barriers. Here we show that AQP4 cell-surface abundance increases in response to hypoxia-induced cell swelling in a calmodulin-dependent manner. Calmodulin directly binds the AQP4 carboxyl terminus, causing a specific conformational change and driving AQP4 cell-surface localization. Inhibition of calmodulin in a rat spinal cord injury model with the licensed drug trifluoperazine inhibited AQP4 localization to the blood-spinal cord barrier, ablated CNS edema, and led to accelerated functional recovery compared with untreated animals. We propose that targeting the mechanism of calmodulin-mediated cell-surface localization of AQP4 is a viable strategy for development of CNS edema therapies.
  •  
2.
  • Al-Jubair, Tamim, et al. (författare)
  • Characterization of human aquaporin protein-protein interactions using microscale thermophoresis (MST)
  • 2022
  • Ingår i: STAR Protocols. - : Elsevier BV. - 2666-1667. ; 3:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Aquaporin water channels (AQPs) are membrane proteins that maintain cellular water homeostasis. The interactions between human AQPs and other proteins play crucial roles in AQP regulation by both gating and trafficking. Here, we describe a protocol for characterizing the interaction between a human AQP and a soluble interaction partner using microscale thermophoresis (MST). MST has the advantage of low sample consumption and high detergent compatibility enabling AQP protein-protein interaction investigation with a high level of control of components and environment. For complete details on the use and execution of this protocol, please refer to Kitchen et al. (2020) and Roche et al. (2017).
  •  
3.
  • Al-Jubair, Tamim, et al. (författare)
  • High-yield overproduction and purification of human aquaporins from Pichia pastoris
  • 2022
  • Ingår i: STAR Protocols. - : Elsevier BV. - 2666-1667. ; 3:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Aquaporins (AQPs) are membrane-bound water channels that play crucial roles in maintaining the water homeostasis of the human body. Here, we present a protocol for high-yield recombinant expression of human AQPs in the methylotropic yeast Pichia pastoris and subsequent AQP purification. The protocol typically yields 1–5 mg AQP per g of yeast cell at >95% purity and is compatible with any membrane protein cloned into Pichia pastoris, although expression levels may vary. For complete details on the use and execution of this protocol, please refer to Kitchen et al. (2020) and Frick et al. (2014).
  •  
4.
  • Kitchen, Philip, et al. (författare)
  • Calcein Fluorescence Quenching to Measure Plasma Membrane Water Flux in Live Mammalian Cells
  • 2020
  • Ingår i: STAR Protocols. - : Elsevier BV. - 2666-1667. ; 1:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Aquaporins (AQPs) are membrane channel proteins that facilitate the movement of water down osmotic gradients across biological membranes. This protocol allows measurements of AQP-mediated water transport across the plasma membrane of live mammalian cells. Calcein is a fluorescent dye that is quenched in a concentration-dependent manner. Therefore, on short timescales, its concentration-dependent fluorescence can be used as a probe of cell volume, and therefore a probe of water transport into or out of cells. For complete details on the use and execution of this protocol, please refer to Kitchen et al. (2020) and Kitchen and Conner (2015). For the underlying methodology development, please refer to Fenton et al. (2010) and Solenov et al. (2004).
  •  
5.
  • Kitchen, Philip, et al. (författare)
  • Water channel pore size determines exclusion properties but not solute selectivity
  • 2019
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Aquaporins (AQPs) are a ubiquitous family of transmembrane water channel proteins. A subgroup of AQP water channels also facilitates transmembrane diffusion of small, polar solutes. A constriction within the pore, the aromatic/arginine (ar/R) selectivity filter, is thought to control solute permeability: previous studies on single representative water channel proteins suggest narrow channels conduct water, whilst wider channels permit passage of solutes. To assess this model of selectivity, we used mutagenesis, permeability measurements and in silico comparisons of water-specific as well as glycerol-permeable human AQPs. Our studies show that single amino acid substitutions in the selectivity filters of AQP1, AQP4 and AQP3 differentially affect glycerol and urea permeability in an AQP-specific manner. Comparison between in silico-calculated channel cross-sectional areas and in vitro permeability measurements suggests that selectivity filter cross-sectional area predicts urea but not glycerol permeability. Our data show that substrate discrimination in water channels depends on a complex interplay between the solute, pore size, and polarity, and that using single water channel proteins as representative models has led to an underestimation of this complexity.
  •  
6.
  • Markou, Andrea, et al. (författare)
  • Molecular mechanisms governing aquaporin relocalisation
  • 2022
  • Ingår i: Biochimica et Biophysica Acta - Biomembranes. - : Elsevier BV. - 0005-2736. ; 1864:4
  • Tidskriftsartikel (refereegranskat)abstract
    • The aquaporins (AQPs) form a family of integral membrane proteins that facilitate the movement of water across biological membrane by osmosis, as well as facilitating the diffusion of small polar solutes. AQPs have been recognised as drug targets for a variety of disorders associated with disrupted water or solute transport, including brain oedema following stroke or trauma, epilepsy, cancer cell migration and tumour angiogenesis, metabolic disorders, and inflammation. Despite this, drug discovery for AQPs has made little progress due to a lack of reproducible high-throughput assays and difficulties with the druggability of AQP proteins. However, recent studies have suggested that targetting the trafficking of AQP proteins to the plasma membrane is a viable alternative drug target to direct inhibition of the water-conducting pore. Here we review the literature on the trafficking of mammalian AQPs with a view to highlighting potential new drug targets for a variety of conditions associated with disrupted water and solute homeostasis.
  •  
7.
  • Salman, Mootaz M., et al. (författare)
  • Emerging roles for dynamic aquaporin-4 subcellular relocalization in CNS water homeostasis
  • 2022
  • Ingår i: Brain. - : Oxford University Press (OUP). - 0006-8950 .- 1460-2156. ; 145:1, s. 64-75
  • Tidskriftsartikel (refereegranskat)abstract
    • Aquaporin channels facilitate bidirectional water flow in all cells and tissues. AQP4 is highly expressed in astrocytes. In the CNS, it is enriched in astrocyte endfeet, at synapses, and at the glia limitans, where it mediates water exchange across the blood-spinal cord and blood-brain barriers (BSCB/BBB), and controls cell volume, extracellular space volume, and astrocyte migration. Perivascular enrichment of AQP4 at the BSCB/BBB suggests a role in glymphatic function. Recently, we have demonstrated that AQP4 localization is also dynamically regulated at the subcellular level, affecting membrane water permeability. Ageing, cerebrovascular disease, traumatic CNS injury, and sleep disruption are established and emerging risk factors in developing neurodegeneration, and in animal models of each, impairment of glymphatic function is associated with changes in perivascular AQP4 localization. CNS oedema is caused by passive water influx through AQP4 in response to osmotic imbalances. We have demonstrated that reducing dynamic relocalization of AQP4 to the BSCB/BBB reduces CNS oedema and accelerates functional recovery in rodent models. Given the difficulties in developing pore-blocking AQP4 inhibitors, targeting AQP4 subcellular localization opens up new treatment avenues for CNS oedema, neurovascular and neurodegenerative diseases, and provides a framework to address fundamental questions about water homeostasis in health and disease.
  •  
8.
  • Steffen, Jonas Hyld, et al. (författare)
  • Assessing water permeability of aquaporins in a proteoliposome-based stopped-flow setup
  • 2022
  • Ingår i: STAR Protocols. - : Elsevier BV. - 2666-1667. ; 3:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Aquaporins (AQPs) are water channels embedded in the cell membrane that are critical in maintaining water homeostasis. We describe a protocol for determining the water permeation capacity of AQPs reconstituted into proteoliposomes. Using a stopped-flow setup, AQP embedded in proteoliposomes are exposed to an osmogenic gradient that triggers water flux. The consequent effects on proteoliposome size can be tracked using the fluorescence of an internalized fluorophore. This enables controlled characterization of water flux by AQPs. For complete details on the use and execution of this protocol, please refer to Kitchen et al. (2020).
  •  
9.
  • Tamás, Markus J., 1970, et al. (författare)
  • A Short Regulatory Domain Restricts Glycerol Transport through Yeast Fps1p
  • 2003
  • Ingår i: J. Biol. Chem. ; 278, s. 6337-6345
  • Tidskriftsartikel (refereegranskat)abstract
    • The controlled export of solutes is crucial for cellular adaptation to hypotonic conditions. In the yeast Saccharomyces cerevisiae glycerol export is mediated by Fps1p, a member of the major intrinsic protein (MIP) family of channel proteins. Here we describe a short regulatory domain that restricts glycerol transport through Fps1p. This domain is required for retention of cellular glycerol under hypertonic stress and hence acquisition of osmotolerance. It is located in the N-terminal cytoplasmic extension close to the first transmembrane domain. Several residues within that domain and its precise position are critical for channel control while the proximal residues 13-215 of the N-terminal extension are not required. The sequence of the regulatory domain and its position are perfectly conserved in orthologs from other yeast species. The regulatory domain has an amphiphilic character, and structural predictions indicate that it could fold back into the membrane bilayer. Remarkably, this domain has structural similarity to the channel forming loops B and E of Fps1p and other glycerol facilitators. Intragenic second-site suppressor mutations of the sensitivity to high osmolarity conferred by truncation of the regulatory domain caused diminished glycerol transport, confirming that elevated channel activity is the cause of the osmosensitive phenotype.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 23
Typ av publikation
tidskriftsartikel (21)
konferensbidrag (2)
Typ av innehåll
refereegranskat (22)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Bill, Roslyn M. (23)
Hohmann, Stefan, 195 ... (10)
Kitchen, Philip (9)
Salman, Mootaz M. (8)
Törnroth-Horsefield, ... (8)
Hedfalk, Kristina, 1 ... (8)
visa fler...
Karlgren, Sara, 1975 (8)
Rydström, Jan, 1943 (6)
Al-Jubair, Tamim (5)
Gourdon, Pontus (5)
Tamás, Markus J., 19 ... (4)
Filipsson, Caroline, ... (4)
Steffen, Jonas Hyld (3)
Missel, Julie Winkel (3)
Öberg, Fredrik, 1982 (3)
Neutze, Richard, 196 ... (2)
Thevelein, J M (2)
Sjöhamn, Jennie, 198 ... (2)
Mullins, J G (2)
Mullins, J. G. L. (2)
Pettersson, Nina, 19 ... (2)
Mullins, Jonathan G ... (1)
Albers, Eva, 1966 (1)
Iliff, Jeffrey J. (1)
Karlsson, A. (1)
Karlsson, J. (1)
Larsson, Christer, 1 ... (1)
Gustafsson, Lena, 19 ... (1)
Hallgren, Karin (1)
Levin, M. (1)
Rydström, J. (1)
Wikstrom, J (1)
Hansson, Örjan, 1955 (1)
Iwata, So (1)
Ahmed, Zubair (1)
Nyblom, Anna Maria, ... (1)
Lindkvist-Petersson, ... (1)
Boles, E (1)
Bergström, Johanna (1)
Henderson, Peter J F (1)
Kunji, Edmund R S (1)
Michel, Hartmut (1)
Newstead, Simon (1)
Poolman, Bert (1)
Tate, Christopher G (1)
Vogel, Horst (1)
Elbing, Karin, 1974 (1)
TIGERSTRÖM, ANNA KAT ... (1)
Snoep, J. L. (1)
Nordlander, Bodil, 1 ... (1)
visa färre...
Lärosäte
Göteborgs universitet (15)
Chalmers tekniska högskola (12)
Lunds universitet (9)
Språk
Engelska (23)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (20)
Medicin och hälsovetenskap (3)
Teknik (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy