SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Billger Martin) "

Sökning: WFRF:(Billger Martin)

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Billger, Martin, et al. (författare)
  • Calpain processing of brain microtubules from the Atlantic cod, Gadus morhua.
  • 1993
  • Ingår i: Molecular and cellular biochemistry. - 0300-8177. ; 121:1, s. 85-92
  • Tidskriftsartikel (refereegranskat)abstract
    • Microtubules isolated from Atlantic cod (Gadus morhua) brains retained assembly competence and ultraculture, although treatment with rabbit calpain resulted in loss of MAPs. In addition, spirals and aberrant structures formed when calpain I was activated post assembly. No such effect was seen with calpain II. Soluble fractions from cod brain were found to contain proteolytic activity that could be blocked by exogenously added calpastatin. Calpain was also isolated from cod muscle tissue with 10 times less yield, compared to rabbit lung. On the basis of Ca(2+)-requirements for activation in the mM range, electrophoretic mobility, antigenicity and hydrophobicity, we conclude that the proteolytic activity was attributable to calpain II. There was no difference in effects of rabbit and cod calpain II on cod microtubule proteins, indicating that calpain is a conserved protein. Our results suggest that calpains might be involved in the Ca(2+)-dependent irreversible regulation of cod brain microtubules.
  •  
2.
  • Billger, Martin, et al. (författare)
  • Dynamic instability of microtubules from cold-living fishes.
  • 1994
  • Ingår i: Cell motility and the cytoskeleton. - : Wiley. - 0886-1544 .- 1097-0169. ; 28:4, s. 327-32
  • Tidskriftsartikel (refereegranskat)abstract
    • The dynamic instability of microtubules free of microtubule-associated proteins from two genera of cold-living fishes was measured, by means of video-enhanced differential-interference-contrast microscopy, at temperatures near those of their habitats. Brain microtubules were isolated from the boreal Atlantic cod (Gadus morhua; habitat temperature approximately 2-15 degrees C) and from two austral Antarctic rockcods (Notothenia gibberifrons and N. coriiceps neglecta; habitat temperature approximately -1.8 to + 2 degrees C). Critical concentrations for polymerization of the fish tubulins were in the neighborhood of 1 mg/ml, consistent with high interdimer affinities. Rates of elongation and frequencies of growth-to-shortening transitions ("catastrophes") for fish microtubules were significantly smaller than those for mammalian microtubules. Slow dynamics is therefore an intrinsic property of these fish tubulins, presumably reflecting their adaptation to low temperatures. Two-dimensional electrophoresis showed striking differences between the isoform compositions of the cod and the rockcod tubulins, which suggests that the cold-adapted microtubule phenotypes of northern and southern fishes may have arisen independently.
  •  
3.
  • Billger, Martin, et al. (författare)
  • Microtubule-associated proteins-dependent colchicine stability of acetylated cold-labile brain microtubules from the Atlantic cod, Gadus morhua.
  • 1991
  • Ingår i: The Journal of cell biology. - 0021-9525. ; 113:2, s. 331-8
  • Tidskriftsartikel (refereegranskat)abstract
    • Assembly of brain microtubule proteins isolated from the Atlantic cod, Gadus morhua, was found to be much less sensitive to colchicine than assembly of bovine brain microtubules, which was completely inhibited by low colchicine concentrations (10 microM). The degree of disassembly by colchicine was also less for cod microtubules. The lack of colchicine effect was not caused by a lower affinity of colchicine to cod tubulin, as colchicine bound to cod tubulin with a dissociation constant, Kd, and a binding ratio close to that of bovine tubulin. Cod brain tubulin was highly acetylated and mainly detyrosinated, as opposed to bovine tubulin. When cod tubulin, purified by means of phosphocellulose chromatography, was assembled by addition of DMSO in the absence of microtubule-associated proteins (MAPs), the microtubules became sensitive to low concentrations of colchicine. They were, however, slightly more stable to disassembly, indicating that posttranslational modifications induce a somewhat increased stability to colchicine. The stability was mainly MAPs dependent, as it increased markedly in the presence of MAPs. The stability was not caused by an extremely large amount of cod MAPs, since there were slightly less MAPs in cod than in bovine microtubules. When "hybrid" microtubules were assembled from cod tubulin and bovine MAPs, these microtubules became less sensitive to colchicine. This was not a general effect of MAPs, since bovine MAPs did not induce a colchicine stability of microtubules assembled from bovine tubulin. We can therefore conclude that MAPs can induce colchicine stability of colchicine labile acetylated tubulin.
  •  
4.
  • de Pereda, J M, et al. (författare)
  • Comparative study of the colchicine binding site and the assembly of fish and mammalian microtubule proteins.
  • 1995
  • Ingår i: Cell motility and the cytoskeleton. - : Wiley. - 0886-1544 .- 1097-0169. ; 30:2, s. 153-63
  • Tidskriftsartikel (refereegranskat)abstract
    • Isolated microtubules from cod (Gadus morhua) are apparently more stable to colchicine than bovine microtubules. In order to further characterize this difference, the effect of the colchicine analogue 2-methoxy-5-(2,3,4-trimethoxyphenyl)-2,4,6-cyclo heptatrien-1-one (MTC) was studied on assembly, as measured by turbidity and sedimentation analysis, and on polymer morphology. MTC has the advantage to bind fast and reversible to the colchicine binding site of tubulin even at low temperatures. It was found to bind to one site in cod brain tubulin, with affinity (6.5 +/- 1.5) x 10(5)M-1 at both low or high temperature, similarly to bovine brain tubulin. However, the effect of the binding differed. At substoichiometric concentrations of MTC bovine brain microtubule assembly was almost completely inhibited, while less effect was seen on the mass of polymerized cod microtubule proteins. A preformed bovine tubulin-colchicine complex inhibited the assembly of both cod and bovine microtubules at substoichiometric concentrations, but the effect on the assembly of cod microtubules was less. At higher concentrations (5 x 10(-5) to 1 x 10(-3) M), MTC induced a large amount of cold-stable spirals of cod proteins, whereas abnormal polymers without any defined structure were formed from bovine proteins. Spirals of cod microtubule proteins were only formed in the presence of microtubule associated proteins (MAPs), indicating that the morphological effect of MTC can be modulated by MAPs. The effects of colchicine and MTC differed. At 10(-5) M colchicine no spirals were formed, while at 10(-4) M and 10(-3) M, a mixture of spirals and aggregates was found. The morphology of the spirals differed both from vinblastine spirals and from the spirals previously found when cod microtubule proteins polymerize in the presence of high Ca2+ concentrations. The present data show that even if the colchicine binding site is conserved between many different species, the bindings have different effects which seem to depend on intrinsic properties of the different tubulins.
  •  
5.
  • Goodwin, Richard J. A., et al. (författare)
  • Exemplifying the Screening Power of Mass Spectrometry Imaging over Label-Based Technologies for Simultaneous Monitoring of Drug and Metabolite Distributions in Tissue Sections
  • 2016
  • Ingår i: Journal of Biomolecular Screening. - : Elsevier BV. - 1087-0571 .- 1552-454X. ; 21:2, s. 187-193
  • Tidskriftsartikel (refereegranskat)abstract
    • Mass spectrometry imaging (MSI) provides pharmaceutical researchers with a suite of technologies to screen and assess compound distributions and relative abundances directly from tissue sections and offer insight into drug discovery-applicable queries such as blood-brain barrier access, tumor penetration/retention, and compound toxicity related to drug retention in specific organs/cell types. Label-free MSI offers advantages over label-based assays, such as quantitative whole-body autoradiography (QWBA), in the ability to simultaneously differentiate and monitor both drug and drug metabolites. Such discrimination is not possible by label-based assays if a drug metabolite still contains the radiolabel. Here, we present data exemplifying the advantages of MSI analysis. Data of the distribution of AZD2820, a therapeutic cyclic peptide, are related to corresponding QWBA data. Distribution of AZD2820 and two metabolites is achieved by MSI, which [C-14] AZD2820 QWBA fails to differentiate. Furthermore, the high mass-resolving power of Fourier transform ion cyclotron resonance MS is used to separate closely associated ions.
  •  
6.
  • Modig, C, et al. (författare)
  • MAP 0, a 400-kDa microtubule-associated protein unique to teleost fish.
  • 1997
  • Ingår i: Cell motility and the cytoskeleton. - 0886-1544. ; 38:3, s. 258-69
  • Tidskriftsartikel (refereegranskat)abstract
    • Microtubules from neural tissues of the Atlantic cod, Gadus morhua, and of several species of Antarctic teleosts are composed of tubulin and several microtubule-associated proteins (MAPs), one of which has an apparent molecular weight of approximately 400-430 kDa. Because its apparent molecular weight exceeds those of the MAP 1 proteins, we designate this high molecular weight teleost protein MAP 0. Cod MAP 0 failed to cross-react with antibodies specific for MAPs 1A, 1B and 2 of mammalian brain, for MAP H1 of squid optic lobe, and for chicken erythrocyte syncolin, which suggests that it has a novel structure. Similarly, MAP 0 from the Antarctic fish was not recognized by an antibody specific for bovine MAP 2. Together, these observations suggest that MAP 0 is a novel MAP that may be unique to fish. To determine the tissue specificity and phylogenetic distribution of this protein, we generated a rabbit polyclonal antibody against cod MAP 0. Using this antibody, we found that MAP 0 was present in microtubule proteins isolated from cod brain tissues and spinal cord but was absent in microtubules from heart, liver, and spleen. At the subcellular level, MAP 0 was distributed in cod brain cells in a punctate pattern coincident with microtubules but was absent in skin cells. MAP 0 was also detected in cells of the peripheral nervous system. A survey of microtubule proteins from chordates and invertebrates showed that anti-MAP 0-reactive homologs were present in five teleost species but not in more primitive fish and invertebrates or in higher vertebrates. MAP 0 bound to cod microtubules by ionic interaction at a site recognized competitively by bovine MAP 2. Although its function is unknown, MAP 0 does not share the microtubule-binding properties of the motor proteins kinesin and dynein. We propose that MAP 0 is a unique, teleost-specific MAP.
  •  
7.
  • Rutberg, M, et al. (författare)
  • Distribution of acetylated tubulin in cultured cells and tissues from the Atlantic cod (Gadus morhua). Role of acetylation in cold adaptation and drug stability.
  • 1995
  • Ingår i: Cell biology international. - : Wiley. - 1065-6995. ; 19:9, s. 749-58
  • Tidskriftsartikel (refereegranskat)abstract
    • The Atlantic cod (Gadus morhua) is a poikilothermic animal living at temperatures between 2-15 degrees C. Isolated cod brain tubulin is, in contrast to mammalian brain tubulin, posttranslationally modified by acetylation to a high extent. To investigate the role of acetylation in cold adaptation, microtubules were isolated by a taxol-dependent procedure from different organs of the cod, and cells from different tissues were cultured. All cells from skin and brain were able to grow between 4 degrees C and room temperature. Microtubules in the cultured cells were sometimes severed near the periphery of the cells. Microtubules in brain cells were in general more stable to vinblastine and colchicine, when compared to skin cells. Acetylated microtubules were found only in brain cells, in peripheral nerves on scales and in nerves of the intestinal tract and in microtubules isolated from neuronal tissue. Our results show that acetylated microtubules are found both in the central and peripheral nervous system, but that there is no correlation between acetylation and cold-adaptation.
  •  
8.
  • Seidel, Maria, et al. (författare)
  • Study protocol of comprehensive risk evaluation for anorexia nervosa in twins (CREAT) : a study of discordant monozygotic twins with anorexia nervosa.
  • 2020
  • Ingår i: BMC Psychiatry. - : BioMed Central. - 1471-244X. ; 20:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Anorexia nervosa (AN) is a severe disorder, for which genetic evidence suggests psychiatric as well as metabolic origins. AN has high somatic and psychiatric comorbidities, broad impact on quality of life, and elevated mortality. Risk factor studies of AN have focused on differences between acutely ill and recovered individuals. Such comparisons often yield ambiguous conclusions, as alterations could reflect different effects depending on the comparison. Whereas differences found in acutely ill patients could reflect state effects that are due to acute starvation or acute disease-specific factors, they could also reflect underlying traits. Observations in recovered individuals could reflect either an underlying trait or a "scar" due to lasting effects of sustained undernutrition and illness. The co-twin control design (i.e., monozygotic [MZ] twins who are discordant for AN and MZ concordant control twin pairs) affords at least partial disambiguation of these effects.METHODS: Comprehensive Risk Evaluation for Anorexia nervosa in Twins (CREAT) will be the largest and most comprehensive investigation of twins who are discordant for AN to date. CREAT utilizes a co-twin control design that includes endocrinological, neurocognitive, neuroimaging, genomic, and multi-omic approaches coupled with an experimental component that explores the impact of an overnight fast on most measured parameters.DISCUSSION: The multimodal longitudinal twin assessment of the CREAT study will help to disambiguate state, trait, and "scar" effects, and thereby enable a deeper understanding of the contribution of genetics, epigenetics, cognitive functions, brain structure and function, metabolism, endocrinology, microbiology, and immunology to the etiology and maintenance of AN.
  •  
9.
  • Wallin, Margareta, 1952, et al. (författare)
  • Assembly of Atlantic cod (Gadus morhua) brain microtubules at different temperatures: dependency of microtubule-associated proteins is relative to temperature.
  • 1993
  • Ingår i: Archives of biochemistry and biophysics. - : Elsevier BV. - 0003-9861. ; 307:1, s. 200-5
  • Tidskriftsartikel (refereegranskat)abstract
    • Isolated cod (Gadus morhua) brain microtubules were found to have a broad temperature interval for assembly. In contrast to mammalian microtubules they assembled even at as low temperatures as 14 degrees C. Evidence was found that temperature alters the dependency of microtubule-associated proteins (MAPs) for assembly. The assembly was MAPs-dependent at low, but not at higher temperatures. Assembly at +18 degrees C was inhibited by both NaCl and estramustine phosphate. These compounds are well known to inhibit the binding of MAPs to tubulin. At higher temperatures there was no MAPs dependency for assembly, despite that MAPs bound to the microtubules. Cow MAPs had the same effect as cod MAPs, suggesting that despite differences in MAP composition, the effect is not caused by the unusual composition of cod MAPs. The results therefore suggest that these differences in MAPs dependency are due to intrinsic properties of cod tubulin or tubulin-to-tubulin interactions. Small temperature-induced conformational changes of tubulin and a slight enrichment of acetylated and detyrosinated tubulin in microtubules assembled at +30 degrees C as compared to +15 degrees C, were observed. The ability to alter the assembly stimulating effect of MAPs may be important for the cell to regulate microtubule dynamics and stability. In addition, changes in tubulin conformation and composition of tubulin isoforms may reflect adaptations for microtubule assembly at low temperatures.
  •  
10.
  • Wallin, Margareta, 1952, et al. (författare)
  • Coassembly of bovine and cod microtubule proteins: the ratio of the different tubulins within hybrid microtubules determines the ability to assemble at low temperatures, MAPs dependency and effects of Ca2+.
  • 1997
  • Ingår i: Cell motility and the cytoskeleton. - 0886-1544. ; 38:3, s. 297-307
  • Tidskriftsartikel (refereegranskat)abstract
    • Cod and bovine microtubule proteins (MTP) differ from each other in many respects, e.g., tubulin isoforms and microtubule-associated proteins (MAPs) but only cod MTP are cold-adapted. We used these differences to determine how tubulin isoform composition affects microtubule properties. Mixtures of cod and bovine MTP coassembled at 30 degrees C as shown by light scattering and immunoelectron microscopy, with no apparent preference for one set of MAPs over the other. Bovine tubulin was, in contrast to cod tubulin, unable to assemble in the absence of MAPs, while 50%/50% mixtures of bovine and cod tubulin, respectively, coassembled readily without exclusion of cod or bovine tubulin isoforms in the hybrids, as shown by two-dimensional gel electrophoresis. Alteration in MAPs dependency was also confirmed by the use of the MAPs-binding microtubule inhibitor estramustine phosphate. Addition of 10 mM Ca2+ to microtubules induced formation of spirals or rings depending on the ratio of the cod and bovine MTP, respectively. Bovine MTP were unable to assemble at low temperatures, while cod MTP are cold-adapted and assembled efficiently at 14 degrees C in the presence of MAPs. Amounts of cod MTP as low as 33% were enough to induce assembly of bovine/cod MTP hybrids. The critical concentration for assembly of a 50%/50% mixture was similar to that of 100% cod MTP. Taken together, the results show that the divergent cod and bovine MTP can coassemble, and that alterations in tubulin isotype/isoform composition above certain thresholds significantly modulate microtubule properties such as MAPs dependency, effects of Ca2+, and ability to assemble at low temperatures.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy