SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Billings Liana K.) "

Sökning: WFRF:(Billings Liana K.)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Tobias, Deirdre K, et al. (författare)
  • Second international consensus report on gaps and opportunities for the clinical translation of precision diabetes medicine
  • 2023
  • Ingår i: Nature Medicine. - 1546-170X. ; 29:10, s. 2438-2457
  • Forskningsöversikt (refereegranskat)abstract
    • Precision medicine is part of the logical evolution of contemporary evidence-based medicine that seeks to reduce errors and optimize outcomes when making medical decisions and health recommendations. Diabetes affects hundreds of millions of people worldwide, many of whom will develop life-threatening complications and die prematurely. Precision medicine can potentially address this enormous problem by accounting for heterogeneity in the etiology, clinical presentation and pathogenesis of common forms of diabetes and risks of complications. This second international consensus report on precision diabetes medicine summarizes the findings from a systematic evidence review across the key pillars of precision medicine (prevention, diagnosis, treatment, prognosis) in four recognized forms of diabetes (monogenic, gestational, type 1, type 2). These reviews address key questions about the translation of precision medicine research into practice. Although not complete, owing to the vast literature on this topic, they revealed opportunities for the immediate or near-term clinical implementation of precision diabetes medicine; furthermore, we expose important gaps in knowledge, focusing on the need to obtain new clinically relevant evidence. Gaps include the need for common standards for clinical readiness, including consideration of cost-effectiveness, health equity, predictive accuracy, liability and accessibility. Key milestones are outlined for the broad clinical implementation of precision diabetes medicine.
  •  
2.
  • Vimaleswaran, Karani S, et al. (författare)
  • Association of vitamin D status with arterial blood pressure and hypertension risk: a mendelian randomisation study.
  • 2014
  • Ingår i: The lancet. Diabetes & endocrinology. - 2213-8595 .- 2213-8587. ; 2:9, s. 719-29
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Low plasma 25-hydroxyvitamin D (25[OH]D) concentration is associated with high arterial blood pressure and hypertension risk, but whether this association is causal is unknown. We used a mendelian randomisation approach to test whether 25(OH)D concentration is causally associated with blood pressure and hypertension risk. Methods In this mendelian randomisation study, we generated an allele score (25[OH]D synthesis score) based on variants of genes that affect 25(OH)D synthesis or substrate availability (CYP2R1 and DHCR7), which we used as a proxy for 25(OH)D concentration. We meta-analysed data for up to 108173 individuals from 35 studies in the D-CarDia collaboration to investigate associations between the allele score and blood pressure measurements. We complemented these analyses with previously published summary statistics from the International Consortium on Blood Pressure (ICBP), the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium, and the Global Blood Pressure Genetics (Global BPGen) consortium. Findings In phenotypic analyses (up to n=49363), increased 25(OH)D concentration was associated with decreased systolic blood pressure (β per 10% increase, −0·12 mm Hg, 95% CI −0·20 to −0·04; p=0·003) and reduced odds of hypertension (odds ratio [OR] 0·98, 95% CI 0·97–0·99; p=0·0003), but not with decreased diastolic blood pressure (β per 10% increase, −0·02 mm Hg, −0·08 to 0·03; p=0·37). In meta-analyses in which we combined data from D-CarDia and the ICBP (n=146581, after exclusion of overlapping studies), each 25(OH)D-increasing allele of the synthesis score was associated with a change of −0·10 mm Hg in systolic blood pressure (−0·21 to −0·0001; p=0·0498) and a change of −0·08 mm Hg in diastolic blood pressure (−0·15 to −0·02; p=0·01). When D-CarDia and consortia data for hypertension were meta-analysed together (n=142255), the synthesis score was associated with a reduced odds of hypertension (OR per allele, 0·98, 0·96–0·99; p=0·001). In instrumental variable analysis, each 10% increase in genetically instrumented 25(OH)D concentration was associated with a change of −0·29 mm Hg in diastolic blood pressure (−0·52 to −0·07; p=0·01), a change of −0·37 mm Hg in systolic blood pressure (−0·73 to 0·003; p=0·052), and an 8·1% decreased odds of hypertension (OR 0·92, 0·87–0·97; p=0·002). Interpretation Increased plasma concentrations of 25(OH)D might reduce the risk of hypertension. This finding warrants further investigation in an independent, similarly powered study.
  •  
3.
  • Billings, Liana K., et al. (författare)
  • Variation in maturity-onset diabetes of the young genes influence response to interventions for diabetes prevention
  • 2017
  • Ingår i: Journal of Clinical Endocrinology and Metabolism. - : The Endocrine Society. - 0021-972X .- 1945-7197. ; 102:8, s. 2678-2689
  • Tidskriftsartikel (refereegranskat)abstract
    • Context: Variation in genes that cause maturity-onset diabetes of the young (MODY) has been associated with diabetes incidence and glycemic traits. Objectives: This study aimed to determine whether genetic variation in MODY genes leads to differential responses to insulin-sensitizing interventions. Design and Setting: This was a secondary analysis of a multicenter, randomized clinical trial, the Diabetes Prevention Program (DPP), involving 27 US academic institutions. We genotyped 22 missense and 221 common variants in the MODY-causing genes in the participants in the DPP. Participants and Interventions: The study included 2806 genotyped DPP participants randomized to receive intensive lifestyle intervention (n = 935), metformin (n = 927), or placebo (n = 944). Main Outcome Measures: Association of MODY genetic variants with diabetes incidence at a median of 3 years and measures of 1-year β-Cell function, insulinogenic index, and oral disposition index. Analyses were stratified by treatment group for significant single-nucleotide polymorphism 3 treatment interaction (Pint, 0.05). Sequence kernel association tests examined the association between an aggregate of rare missense variants and insulinogenic traits. Results: After 1 year, the minor allele of rs3212185 (HNF4A) was associated with improved β-Cell function in the metformin and lifestyle groups but not the placebo group; the minor allele of rs6719578 (NEUROD1) was associated with an increase in insulin secretion in the metformin group but not in the placebo and lifestyle groups. Conclusions: These results provide evidence that genetic variation among MODY genes may influence response to insulin-sensitizing interventions.
  •  
4.
  • Billings, Liana K., et al. (författare)
  • The Influence of Rare Genetic Variation in SLC30A8 on Diabetes Incidence and beta-Cell Function
  • 2014
  • Ingår i: Journal of Clinical Endocrinology and Metabolism. - : The Endocrine Society. - 1945-7197 .- 0021-972X. ; 99:5, s. 926-930
  • Tidskriftsartikel (refereegranskat)abstract
    • Context/Objective: The variant rs13266634 in SLC30A8, encoding a beta-cell-specific zinc transporter, is associated with type 2 diabetes. We aimed to identify other variants in SLC30A8 that increase diabetes risk and impair beta-cell function, and test whether zinc intake modifies this risk. Design/Outcome: We sequenced exons in SLC30A8 in 380 Diabetes Prevention Program (DPP) participants and identified 44 novel variants, which were genotyped in 3445 DPP participants and tested for association with diabetes incidence and measures of insulin secretion and processing. We examined individual common variants and used gene burden tests to test 39 rare variants in aggregate. Results: We detected a near-nominal association between a rare-variant genotype risk score and diabetes risk. Five common variants were associated with the oral disposition index. Various methods aggregating rare variants demonstrated associations with changes in oral disposition index and insulinogenic index during year 1 of follow-up. We did not find a clear interaction of zinc intake with genotype on diabetes incidence. Conclusions: Individual common and an aggregate of rare genetic variation in SLC30A8 are associated with measures of beta-cell function in the DPP. Exploring rare variation may complement ongoing efforts to uncover the genetic influences that underlie complex diseases.
  •  
5.
  • Franks, Paul, et al. (författare)
  • Common variation at PPARGC1A/B and change in body composition and metabolic traits following preventive interventions : the Diabetes Prevention Program
  • 2014
  • Ingår i: Diabetologia. - : Springer. - 0012-186X .- 1432-0428. ; 57:3, s. 485-490
  • Tidskriftsartikel (refereegranskat)abstract
    • PPARGC1A and PPARGCB encode transcriptional coactivators that regulate numerous metabolic processes. We tested associations and treatment (i.e. metformin or lifestyle modification) interactions with metabolic traits in the Diabetes Prevention Program, a randomised controlled trial in persons at high risk of type 2 diabetes. We used Tagger software to select 75 PPARGCA1 and 94 PPARGC1B tag single-nucleotide polymorphisms (SNPs) for analysis. These SNPs were tested for associations with relevant cardiometabolic quantitative traits using generalised linear models. Aggregate genetic effects were tested using the sequence kernel association test. In aggregate, PPARGC1A variation was strongly associated with baseline triacylglycerol concentrations (p = 2.9 x 10(-30)), BMI (p = 2.0 x 10(-5)) and visceral adiposity (p = 1.9 x 10(-4)), as well as with changes in triacylglycerol concentrations (p = 1.7 x 10(-5)) and BMI (p = 9.9 x 10(-5)) from baseline to 1 year. PPARGC1B variation was only associated with baseline subcutaneous adiposity (p = 0.01). In individual SNP analyses, Gly482Ser (rs8192678, PPARGC1A) was associated with accumulation of subcutaneous adiposity and worsening insulin resistance at 1 year (both p < 0.05), while rs2970852 (PPARGC1A) modified the effects of metformin on triacylglycerol levels (p (interaction) = 0.04). These findings provide several novel and other confirmatory insights into the role of PPARGC1A variation with respect to diabetes-related metabolic traits. Trial registration ClinicalTrials.gov NCT00004992.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy