SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Birch Jens Professor 1960 ) "

Sökning: WFRF:(Birch Jens Professor 1960 )

  • Resultat 1-10 av 25
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Choolakkal, Arun Haridas, 1992- (författare)
  • Conformal chemical vapor deposition of boron carbide thin films
  • 2023
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The sustainability goals of the modern world and the fascinating properties of sub-micron scale materials promote development of materials in thin film form. Thin films are materials that have thicknesses ranging from sub-nanometer to several micrometers, synthesized by various deposition techniques. They are used for diverse applications, such as light emitting diodes, solar cells, semiconductor chips, etc. The primary objective of this research project is to develop a chemical vapor deposition (CVD) process for conformal boron carbide thin films. Since boron carbide is a promising neutron converter material for solid-state neutron detectors, the process was validated by depositing on prototype detector chips.  In this study, triethylboron (TEB) was used as single source CVD precursor to deposit boron carbide thin films. The initial experiments focused on low reaction rate deposition by depositing in a kinetically limited regime. The films deposited at ≤450 °C in 8:1 aspect ratio micro-trench structures were highly conformal and show a stoichiometry of about B5.2C. We attribute this observed conformality to the slow reaction kinetics of the TEB at the low deposition temperature enabling the diffusive transport of the precursor molecule down the trench. The depositions carried out on the prototype detector-chips show promising results.  We expand our studies to investigate a new strategy with the prospect of improving the step coverage at higher temperatures for better film properties. We hypothesize that adding a suitable heavier molecule, diffusion additive, with an appropriate partial pressure can enhance the step coverage by pushing the lighter precursor molecule via competitive co-diffusion. It was tested by adding Xe gas to the boron carbide CVD from TEB. The result shows that with this diffusion additive the step coverage was improved from 0.71 to 0.97. From our experimental results, we suggest a competitive diffusion model that can be adapted to other CVD processes to enhance the film step coverage.  The CVD process is further validated by depositing onto carbon nanotube membranes. The initial results show that the process was able to afford evenly deposition around the individual nanotubes in the carbon nanotube membrane. Raman spectroscopy measurements show a similar D-band to G-band intensity ratio before and after the deposition indicating that no defects were induced in the nanotubes.      
  •  
2.
  • Lorentzon, Marcus, 1993- (författare)
  • Nanostructured TiN/ZrAlN and HfAlN Thin Films : Effect of Structure on Mechanical Properties
  • 2024
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Transition metal nitrides are a remarkable group of ceramic materials that offer exceptional properties such as high hardness, low tribological wear, excellent thermal stability, and high oxidation resistance. Alloys such as TiN, CrN, VN, ZrN, and HfN have been identified as ideal candidates for protective coatings on cutting tool inserts in the metal processing industry. While TiAlN has been widely accepted, ZrAlN and HfAlN alloys have much unexplored potential. With a melting point of HfN at 3300 °C, approximately 400 °C higher than TiN, HfAlN shows great potential for age-hardening at even higher temperatures. These remarkable materials inspire us to push the limits of what is possible, and to continue to innovate materials science.The work performed in this thesis focuses on the development of hard coatings using ionassisted reactive magnetron sputtering. The coatings are based on group IV TM-Al-N, where TM is either Ti, Zr, or Hf. The aim is to enhance the performance of these ceramic coatings by simultaneously increasing their hardness and toughness. To achieve this, the growth mechanisms, structure, and mechanical properties of the films were studied in detail. The coatings were deposited onto single crystal Si(001) and MgO(001) substrates.The first study describes the development of a multilayer structure, consisting of alternating layers of TiN and Zr0.37Al0.63N1.09, with a bilayer period of 20 nm, with the aim of combining the unique properties of the constituent materials. Cubic rocksalt TiN is known for its high hardness and unfortunate brittleness. Hexagonal wurtzite Zr0.37Al0.63N1.09 is less hard, but also more ductile. The crystal structure of the multilayers varied depending on the substrate temperature during growth. At temperatures below ~350 °C, the ZrAlN layers grew near amorphous, while they were nanocrystalline between 500 °C and 800°C. At 900 °C, the ZrAlN segregated into a nanolabyrinthine structure consisting of w-AlN and c-ZrN. The hardness of the films increased significantly with increasing deposition temperature, from 24 GPa to 36 GPa. The films also showed superior fracture stress compared to the available literature, increasing from 6.1 to 7.7 GPa. The fracture toughness of the films was also improved compared to the binary constituents, up to 2.8 MPa√m. These findings illustrate the potential of combining diverse materials, to create new structures with enhanced properties and highlight the importance of optimizing the growth conditions to achieve the desired film functionality.In a second study, single-crystal Hf1-xAlxNy films were grown at high temperatures on MgO(001) substrates. Excess nitrogen in HfNy (y=1.22, 1.33) film created ordered nanosized domains of variations in the nitrogen composition, leading to the formation of a compositionally modulated superstructure. In Hf0.93Al0.07N1.15, the immiscibility of the constituents (c-HfN and c-AlN) causes the formation of a superstructure consisting of isostructural Al-rich and Hf-rich domains due to surface initiated spinodal decomposition. Micropillar compression tests reveal a ductile HfN1.22 and substantial strain hardening upon deformation. Hf0.93Al0.07N1.15 exhibited a brittle nature, although at a substantially increased yield stress in comparison, consistent with the improved hardness from 26 GPa to 40.5 GPa, measured by nanoindentation.
  •  
3.
  • Chang, Jui-Che, 1996- (författare)
  • Controlled growth of metastable Ta3N5 semiconducting films
  • 2024
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The semiconductor tritantalum pentanitride (Ta3N5) is a promising material for green energy applications, specifically in the photoelectrolysis of water to produce oxygen and hydrogen. With a bandgap of approximately 2 eV, Ta3N5 is well-suited for efficient solar light absorption across a broad spectrum, and its band positions align favorably with the redox potential of water. Theoretically, this material could achieve a solar-to-hydrogen efficiency of up to 15.9%. However, the intricate nature of the Ta-N compounds and its metastability have limited research into the development of high-quality Ta3N5.   In this thesis, the metastable Ta3N5 films were grown using two types of reactive magnetron sputtering techniques, direct current magnetron sputtering (DCMS) and high-power impulse magnetron sputtering (HiPIMS). Several key parameters were found to stabilize the formation of Ta3N5 phase, including the amount of oxygen in a gas mixture of Ar and N2, total working pressure, the Ta2O5 seed layer, and Ar/N2 partial pressure ratio.   First, sputter growth of Ta-N film using a gas mixture of Ar and N2 without oxygen gas, only metallic -TaN and ε-TaN phase were formed. After introducing a small amount of oxygen in the process gas (~2% of total working pressure), the oxygen atoms, with higher electronegativity, replace nitrogen atoms to trigger and stabilize the formation of crystalline Ta3N5-type structure. In addition, with a suitable Ar/N2 partial pressure ratio for Ta3N5 formation, a low-degree fiber-textural orthorhombic Ta3N5 film was formed at the total working pressure range from 5 to 30 mTorr. At 40 mTorr total working pressure, the deposited film transforms to O-rich amorphous Ta-O-N compound. Second, the effect of Ta2O5 seed layer on the control of Ta-N phase was studied. The Ta3N5 phase can be grown only with a Ta2O5 seed layer assistance. Without the seed layer, only metallic TaN phases were formed no matter if the film was grown with or without oxygen assistance. Furthermore, domain epitaxial growth of Ta3N5 film on sapphire substrate was achieved through the control of seed layer’s thickness and crystallinity. While the film was grown on an amorphous TaOx seed layer, the Ta3N5 structure becomes polycrystalline. Third, the formation mechanism and epitaxial growth were studied through microstructural analysis in combination of first-principle density-functional theory calculations. Time-dependent growth evolution of Ta3N5 films combined with HRTEM and EDX measurement revealed that the nitridation of Ta2O5 seed layer and Ta-N film deposition occurs simultaneously at the beginning of the Ta3N5 deposition. Further deposition, the Ta3N5 layer was dominated by {00k} domain mixed with (113) domain with a thin TaN layer between Ta3N5 layer and substrate. Last, various Ta-N compounds were grown via controlling the Ar/N2 partial pressure ratio and total working pressure. When the reactive gas was changed from pure Ar to pure nitrogen, the deposited films transformed from Ta metal (mixed with TaOx), TaN, TaN mixed with Ta3N5 to polycrystalline Ta3N5 phase. To summarize the work conducted in this thesis, I have established a reproducible and precise method for cultivating metastable Ta3N5 through the magnetron sputter deposition technique. The elucidated growth mechanism holds promise for synthesizing Ta3N5 on diverse substrates using alternative techniques, ensuring a controlled and adaptable approach. 
  •  
4.
  • Chang, Jui-Che (författare)
  • Metastable orthorhombic Ta3N5 thin films grown by magnetron sputter epitaxy
  • 2022
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The semiconductor tritantalum pentanitride (Ta3N5) is a promising green-energy material for photoelectrolyzing water to produce oxygen and hydrogen owing to its proper bandgap of 2.0 ± 0.2 eV and band positions to redox potential of water. Compare with the conventional setup of water splitting, such as TiO2, Fe2O3, Cu2O, and WO3, the Ta3N5 shows a proper band gap, which leads to a theoretical efficiency as high as 15.9%. However, the complexity of the Ta-N system and the metastability of the Ta3N5 result in the limited research of the growth of high quality stoichiometric Ta3N5.Conventionally, the two-step growth of oxidation and nitridation of a metal Ta using thermal annealing in oxygen and ammonia environment is used to produce the Ta3N5. However, the amount of incorporated oxygen in the Ta3N5 samples and film’s thickness and interface are hardly to be controlled, and the use of ammonia as the nitridation gas is harmful to the environment. Hence, in this thesis work, the reactive magnetron sputtering is used to synthesis the Ta3N5, which demonstrates some advantages, such as possibility to grow on a substrate with nanostructure on the surface, a simplification of growth process, usage of environmental-friendly reactive gas, and even scaling up to the industrial application.The thesis presents a successful growth of orthorhombic Ta3N5-type Ta-O-N compound thin films on Si and sapphire substrates, specifically Ta3-xN5-yOy, using reactive magnetron sputtering with a gas mixture of Ar, N2, and O2. In the deposition process, the total working pressure was increasing from 5 to 40 mTorr, while keeping same partial pressure ratio (Ar: N2: O2 = 3: 2: 0.1). When the total pressure in the region between 5-30 mTorr, a low-degree fiber-textural Ta3-xN5-yOy films were grown. In addition, with the characterization of elastic recoil detection analysis (ERDA), the atomic fraction of O, N, and Ta of as-grown Ta3-xN5-yOy films were found varying from 0.02 to 0.15, 0.66 to 0.54, and 0.33 to 0.31, respectively, which leads to a b-lattice constant decrease around 1.3 %, shown in X-ray diffraction (XRD) results. For a total working pressure up to 40 mTorr, an amorphous O-rich Ta-O-N compound film was formed mixed with non-stoichiometric TaON and Ta2O5, which further raised the oxygen atomic fraction to ~0.48. The increasing total working pressure results in an increasing band gap from 2.22 to 2.66 eV of Ta3-xN5-yOy films, and further increasing to around 2.96 eV of O-rich Ta-O-N compound films. The mechanism of increasing oxygen atomic fraction in the film is founded correlated with the forming oxide on the Ta target surface during the deposition process due to the strong reactivity of O to Ta by the characterization of optical emission spectroscopy (OES). Moreover, the sputter yield was reduced due to the target poisoning, and which is evidenced by both plasma analysis and depth profile from ERDA.A further studies with the deposition parameters for nearly pure Ta3N5 films (oxygen atomic fraction ~2%) was performed using c-axis oriented Al2O3 substrate. In this research, it is found that a Ta2O5 seed layer and a small amount of oxygen were necessary for the growth of Ta3N5. Without the help of seed layer and oxygen, only metallic TaN phases, either mixture of ε- and δ- TaN or δ-TaN were grown, evidenced by X-ray photoelectron spectroscopy (XPS). Furthermore, the structure and phase purity of Ta3N5-phase dominated films was found highly correlated with the thickness of the Ta2O5 seed layer. With the increasing thickness of the seed layer from 5, 9, to 17 nm, the composition of grown films was changed from 111-oriented δ-TaN mixed with c-axis oriented Ta3N5, c-axis oriented Ta3N5, to polycrystalline Ta3N5. In addition, the azimuthal φ-scans in grazing incident geometry demonstrates that the c-axis oriented Ta3N5 contained epitaxially three-variant-orientation domains, in which the a and b planes parallel to the m and a planes of c-axis oriented Al2O3. With the simulation of density functional theory (DFT), the growth of thin seed layers of orthorhombic Ta2O5 (β-Ta2O5) was found promoting by introducing a small amount of oxygen, after calculating the interplay between the topological and energy selection criteria. By the co-action of the mentioned criteria, this already grown Ta2O5 seed layer favored the growth of the orthorhombic Ta3N5 phase. Hence, the mechanism of the domain epitaxial growth of c-axis oriented Ta3N5 on c-axis oriented Al2O3 is attributed to the similar atomic arrangement Ta3N5(001) and β-Ta2O5(201) with a small lattice mismatch around of 2.6% and 4.5%, for the interface of film/seed layer and seed layer/substrate, respectively, and a favorable energetic interaction between involved materials.
  •  
5.
  • Junaid, Muhammad, 1975- (författare)
  • Magnetron Sputter Epitaxy of GaN Epilayers and Nanorods
  • 2012
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • In this research, electronic-grade GaN(0001) epilayers and nanorods have been grown onto Al2O3(0001) and Si(111) substrates, respectively, by reactive magnetron sputter epitaxy (MSE) using liquid Ga as a sputtering target. MSE, employing ultra high vacuum conditions, high-purity source materials, and lowenergy ion assisted deposition from substrate biasing, is a scalable method, lending itself to large area GaN synthesis.For the growth of epitaxial GaN films two types of sputtering techniques, direct current (DC) magnetron sputtering and high power impulse magnetron sputtering (HiPIMS) were studied. The GaN epitaxial films grown by DC-MSE directly on to Al2O3(0001) in a mixture of Ar and N2, feature low threading dislocation densities on the order of ≤ 1010 cm-2, as determined by transmission electron microscopy (TEM) and modified Williamson-Hall plots. X-ray rocking curves reveal a narrow full-width at half maximum (FWHM) of 1054 arcsec of the 0002 reflection. A sharp 4 K photoluminescence (PL) peak at 3.474 eV with a FWHM of 6.3 meV is attributed to intrinsic GaN band edge emission. GaN(0001) epitaxial films grown on Al2O3 substrates by HiPIMS deposition in a mixed N2/Ar discharge contain both strained domains and almost relaxed domains in the same epilayers, which was determined by a combination of x-ray diffraction (XRD), TEM, atomic force microscopy (AFM), μ-Raman microscopy, μ-PL, and Cathodoluminescence (CL). The almost fully relaxed domains show superior structural and optical properties evidenced by a rocking curves with full width at half maximum of 885 arc sec and a low temperature band edge luminescence at 3.47 eV with the FWHM of 10 meV. The other domain exhibits a 14 times higher isotropic strain component, which is due to higher densities of point and extended defects, resulting from  bombardment of energetic species during growth.Single-crystal GaN(0001) nanorods have been grown directly on Si(111) substrates by DC-MSE in a pure N2environment. The as-grown GaN nanorods exhibit very high crystal quality from bottom to the top without any stacking faults, as determined by TEM. The crystal quality is found to increase with increasing working pressure. XRD results show that all the rods are highly 0001 oriented. All nanorods exhibit an N-polarity, as determined by convergent beam electron diffraction methods. Sharp and well-resolved 4 K μ-PL peaks at ~3.474 eV with a FWHM ranging from 1.7 meV to 22 meV are attributed to the intrinsic GaN band edge emission and corroborate the exceptional crystal quality of the material. Texture measurements reveal that the rods have random in-plane orientation when grown on Si(111) with its native oxide while they have an inplane epitaxial relationship of GaN[11̅20] // Si[1̅10] when grown on Si(111) without the surface oxide. The best structural and optical properties of the rods were achieved at N2 partial pressures of 15 to 20 mTorr. By diluting the reactive N2 working gas in DC-MSE with Ar, it is possible to achieve favorable growth conditions for high quality GaN nanorods onto Si(111) at a low total pressure of 5 mTorr. With an addition of small amount of Ar (0.5 mTorr), we observe an increase in nanorod aspect ratio from 8 to ~35, a decrease in average diameter from 74 nm to 35 nm, and a 2-fold increase in nanorod density compared to pure N2 conditions. By further dilution, the aspect ratio continuously decreases to 14 while the diameter increases to 60 nm and the nanorod density increases to a maximum of 2.4×109 cm-1. The changes in nanorod morphology upon Ar-dilution of the N2 working gas are explained by a transition from N-rich growth conditions, promoting the diffusion induced nanorods growth mode, to Ga-rich growth conditions, in qualitative agreement with GaN nanorods growth by MBE. At N2 partial pressure of 2.5 mTorr, the Ga-target is close to a non-poisoned state which gives the most perfect crystal quality which is reflected in an exceptionally narrow band edge emission at 3.479 eV with a FWHM of only 1.7 meV. Such structural and optical properties are comparable to rods previously grown at 3 to 4 time higher total working pressures of pure N2.
  •  
6.
  • Serban, Alexandra, 1988- (författare)
  • Magnetron Sputter Epitaxy of Group III-Nitride Semiconductor Nanorods
  • 2017
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The III-nitride semiconductors family includes gallium nitride (GaN), aluminum nitride (AlN), indium nitride (InN), and related ternary and quaternary alloys. The research interest on this group of materials is sparked by the direct bandgaps, and excellent physical and chemical properties. Moreover, the ternary alloys (InGaN, InAlN and AlGaN) present the advantage of bandgap tuning, giving access to the whole visible spectrum, from near infrared into deep ultraviolet wavelengths. The intrinsic properties of III-nitride materials can be combined with characteristical features of nanodimension and geometry in nanorod structures. Moreover, nanorods offer the advantage of avoiding problems arising from the lack of native substrates, like lattice and thermal expansion, film – substrate mismatch.The growth and characterization of group III-nitride semiconductos nanorods, namely InAlN and GaN nanorods, is presented in this thesis. All the nanostructures were grown by employing direct-current reactive magnetron sputter epitaxy. InxAl1−xN self-assembled, core-shell nanorods on Si(111) substrates were demonstrated. A comprehensive study of temperature effect upon the morphology and composition of the nanorods was realized. The radial nanorod heterostructure consists of In-rich cores surrounded by Al-rich shells with different thicknesses. The spontaneous formation of core-shell nanorods is suggested to originate from phase separation due to spinodal decomposition. As the growth temperature increase, In desorption is favored, resulting in thicker Al-rich shells and larger nanorod diameters.Both self-assembled and selective-area grown GaN nanorods are presented. Self-assembled growth of GaN nanorods on cost-effective substrates offers a cheaper alternative and simplifies device processing. Successful growth of high- quality GaN (exhibiting strong bandedge emission and high crystalline quality) on conductive templates/substrates such as Si, SiC, TiN/Si, ZrB2/Si, ZrB2/SiC, Mo, and Ti is supported by the possibility to be used as electrodes when integrated in optoelectronic devices.The self-assembled growth leads to mainly random nucleation, resulting in nanorods with large varieties of diameters, heights and densities within a single growth run. This translates into non-uniform properties and complicates device processing. These problems can be circumvented by employing selective-area growth. Pre-patterned substrates by nano-sphere lithography resulted in GaN nanorods with controlled length, diameter, shape, and density. Well-faceted c-axis oriented GaN nanorods were grown directly onto the native SiOx layer inside nano-opening areas, exhibiting strong bandedge emission at room- temperature and single-mode lasing. Our studies on the growth mechanism revealed a different growth behavior when compared with selective-area grown GaN nanorods by MBE and MOCVD. The time-dependent growth series helped define a comprehensive growth mechanism from the initial thin wetting layer formed inside the openings, to the well-defined, uniform, hexagonal NRs resulted from the coalescence of multiple initial nuclei.
  •  
7.
  • Alves Machado Filho, Manoel, et al. (författare)
  • Self-Induced Core–Shell InAlN Nanorods: Formation and Stability Unraveled by Ab Initio Simulations
  • 2023
  • Ingår i: ACS Nanoscience Au. - : American Chemical Society (ACS). - 2694-2496. ; 3:1, s. 84-93
  • Tidskriftsartikel (refereegranskat)abstract
    • By addressing precursor prevalence and energetics using the DFT-based synthetic growth concept (SGC), the formation mechanism of self-induced InAlN core–shell nanorods (NRs) synthesized by reactive magnetron sputter epitaxy (MSE) is explored. The characteristics of In- and Al-containing precursor species are evaluated considering the thermal conditions at a typical NR growth temperature of around 700 °C. The cohesive and dissociation energies of In-containing precursors are consistently lower than those of their Al-containing counterparts, indicating that In-containing precursors are more weakly bonded and more prone to dissociation. Therefore, In-containing species are expected to exhibit lower abundance in the NR growth environment. At increased growth temperatures, the depletion of In-based precursors is even more pronounced. A distinctive imbalance in the incorporation of Al- and In-containing precursor species (namely, AlN/AlN+, AlN2/AlN2+, Al2N2/Al2N2+, and Al2/Al2+ vs InN/InN+, InN2/InN2+, In2N2/In2N2+, and In2/In2+) is found at the growing edge of the NR side surfaces, which correlates well with the experimentally obtained core–shell structure as well as with the distinctive In-rich core and vice versa for the Al-rich shell. The performed modeling indicates that the formation of the core–shell structure is substantially driven by the precursors’ abundance and their preferential bonding onto the growing edge of the nanoclusters/islands initiated by phase separation from the beginning of the NR growth. The cohesive energies and the band gaps of the NRs show decreasing trends with an increment in the In concentration of the NRs’ core and with an increment in the overall thickness (diameter) of the NRs. These results reveal the energy and electronic reasons behind the limited growth (up to ∼25% of In atoms of all metal atoms, i.e., InxAl1–xN, x ∼ 0.25) in the NR core and may be qualitatively perceived as a limiting factor for the thickness of the grown NRs (typically <50 nm).
  •  
8.
  • Broekhuijsen, Sjoerd, 1993- (författare)
  • 11B4C containing Ni/Ti neutron multilayer mirrors
  • 2021
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The work in this thesis covers the design, growth and characterisation of neutron multilayers. The performance of these multilayers is highly dependent on the obtained interface width between the layers, even a modest improvement can offer a substantial increase in reflectivity performance. As multilayers are such an integral component of many neutron optical instruments, any improvement in terms of reflectivity performance has broad implications for all neutron scattering experiments. This project has been carried out with the construction of the European Spallation Source (ESS) in mind, but the principles extend to all neutron scattering sources.Ni/Ti is the conventional material system of choice for neutron optical components due to the high contrast in scattering length density (SLD). The reflected intensity of such components is largely dependent on the interface width, caused by the formation of nanocrystallites, interdiffusion, and/or intermixing. Apart from hampering the reflectivity performance, the finite interface width between the layers also limits the minimum usable layer thickness in the mirror stack. The formation of nanocrystallites has been eliminated by co-depositing of B4C . This has been combined with a modulated ion assistance scheme to smoothen the interfaces. X-ray reflectivity (XRR) measurements show significantly improvements compared to pure Ni/Ti multilayers. This has further been investigated using low neutron-absorbing 11B4C instead. After deposition, the 11B4C containing films have been characterized using neutron reflectometry, X-ray reflectivity, transmission electron microscopy, elastic recoil detection analysis, X-ray photoelectron spectroscopy. A large part of his work has focused on fitting X-ray and neutron reflectivity measurements in order to obtain structural parameters.The fits to the experimental data suggest a significant improvement in interface width for the samples that have been co-deposited with 11B4C using a modulated ion assistance scheme during deposition. Any accumulation of roughness has been eliminated, and the average initial interface width at the first bilayer has been reduced from 6.3 Å to 4.5 Å per bilayer. The respective reflectivity performance for these structural parameters have been simulated for a neutron supermirror (N = 5000) for both materials at a neutron wavelength at λ = 3 Å using the IMD software. The predicted reflectivity performance for the 11B4C containing samples amounts to about 71%, which is a significant increase compared to the pure Ni/Ti samples which have a predicted reflectivity of 62%. This results in a reflectivity increase from 0.84% to 3.3% after a total of 10 reflections, resulting in more than 400% higher neutron flux at experiment.
  •  
9.
  • Chang, Jui-Che, et al. (författare)
  • Domain epitaxial growth of Ta3N5 film on c-plane sapphire substrate
  • 2022
  • Ingår i: Surface & Coatings Technology. - : Elsevier. - 0257-8972 .- 1879-3347. ; 443
  • Tidskriftsartikel (refereegranskat)abstract
    • Tritantalum pentanitride (Ta3N5) semiconductor is a promising material for photoelectrolysis of water with high efficiency. Ta3N5 is a metastable phase in the complex system of TaN binary compounds. Growing stabilized single-crystal Ta3N5 films is correspondingly challenging. Here, we demonstrate the growth of a nearly single-crystal Ta3N5 film with epitaxial domains on c-plane sapphire substrate, Al2O3(0001), by magnetron sputter epitaxy. Introduction of a small amount ~2% of O2 into the reactive sputtering gas mixed with N2 and Ar facilitates the formation of a Ta3N5 phase in the film dominated by metallic TaN. In addition, we indicate that a single-phase polycrystalline Ta3N5 film can be obtained with the assistance of a Ta2O5 seed layer. With controlling thickness of the seed layer smaller than 10 nm and annealing at 1000 °C, a crystalline β phase Ta2O5 was formed, which promotes the domain epitaxial growth of Ta3N5 films on Al2O3(0001). The mechanism behind the stabilization of the orthorhombic Ta3N5 structure resides in its stacking with the ultrathin seed layer of orthorhombic β-Ta2O5, which is energetically beneficial and reduces the lattice mismatch with the substrate.
  •  
10.
  • Chang, Jui-Che, et al. (författare)
  • HiPIMS-grown AlN buffer for threading dislocation reduction in DC-magnetron sputtered GaN epifilm on sapphire substrate
  • 2023
  • Ingår i: Vacuum. - : PERGAMON-ELSEVIER SCIENCE LTD. - 0042-207X .- 1879-2715. ; 217
  • Tidskriftsartikel (refereegranskat)abstract
    • Gallium nitride (GaN) epitaxial films on sapphire (Al2O3) substrates have been grown using reactive magnetron sputter epitaxy with a liquid Ga target. Threading dislocations density (TDD) of sputtered GaN films was reduced by using an inserted high-quality aluminum nitride (AlN) buffer layer grown by reactive high power impulse magnetron sputtering (R-HiPIMS) in a gas mixture of Ar and N2. After optimizing the Ar/N2 pressure ratio and deposition power, a high-quality AlN film exhibiting a narrow full-width at half-maximum (FWHM) value of the double-crystal x-ray rocking curve (DCXRC) of the AlN(0002) peak of 0.086° was obtained by R-HiPIMS. The mechanism giving rise the observed quality improvement is attributed to the enhancement of kinetic energy of the adatoms in the deposition process when operated in a transition mode. With the inserted HiPIMS-AlN as a buffer layer for direct current magnetron sputtering (DCMS) GaN growth, the FWHM values of GaN(0002) and (10 1‾ 1) XRC decrease from 0.321° to 0.087° and from 0.596° to 0.562°, compared to the direct growth of GaN on sapphire, respectively. An order of magnitude reduction from 2.7 × 109 cm−2 to 2.0 × 108 cm−2 of screw-type TDD calculated from the FWHM of the XRC data using the inserted HiPIMS-AlN buffer layer demonstrates the improvement of crystal quality of GaN. The result of TDD reduction using the HiPIMS-AlN buffer was also verified by weak beam dark-field (WBDF) cross-sectional transmission electron microscopy (TEM).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 25
Typ av publikation
tidskriftsartikel (12)
licentiatavhandling (7)
doktorsavhandling (6)
Typ av innehåll
övrigt vetenskapligt/konstnärligt (13)
refereegranskat (12)
Författare/redaktör
Birch, Jens, 1960- (13)
Birch, Jens, Profess ... (12)
Hultman, Lars, Profe ... (11)
Hsiao, Ching-Lien, 1 ... (9)
Palisaitis, Justinas ... (4)
Chang, Jui-Che (4)
visa fler...
Greczynski, Grzegorz ... (4)
Eriksson, Fredrik, 1 ... (4)
Bakhit, Babak, 1983- (3)
Dorri, Samira, 1988- (3)
Hsiao, Ching-Lien, A ... (2)
Persson, Per O. Å., ... (2)
Ghafoor, Naureen, 19 ... (2)
Nayak, Sanjay Kumar (2)
Primetzhofer, Daniel (1)
Stüber, Michael (1)
Alling, Björn, 1980- (1)
Ahlgren, Mats (1)
Gothelid, Emmanuelle (1)
Lundin, Daniel, 1980 ... (1)
Sortica, Mauricio A. (1)
Ali, Sharafat, Assoc ... (1)
Jonson, Bo, 1958- (1)
Eklund, Per, Associa ... (1)
Paul, Biplab, 1980- (1)
Tseng, Eric Nestor, ... (1)
Alves Machado Filho, ... (1)
dos Santos, Renato B ... (1)
Gueorguiev, Gueorgui ... (1)
Dahlqvist, Martin, 1 ... (1)
Rosén, Johanna, Prof ... (1)
Magnusson, Roger, 19 ... (1)
Horng, Ray-Hua (1)
Rosén, Johanna, 1975 ... (1)
Petrov, Ivan, 1949- (1)
Lu, Jun, 1962- (1)
Sarius, Niklas (1)
Schell, Norbert (1)
Broekhuijsen, Sjoerd ... (1)
Eriksson, Fredrik, A ... (1)
Bigault, Thierry, Ph ... (1)
Vorobiev, Alexei (1)
Devishvili, Anton (1)
Music, Denis, Profes ... (1)
Chang, Jui-Che, 1996 ... (1)
Greczynski, Grzegorz ... (1)
Rudolph, Martin, Dr. (1)
Kostov Gueorguiev, G ... (1)
Sandström, Per, 1970 ... (1)
Lo, Yi-Ling (1)
visa färre...
Lärosäte
Linköpings universitet (25)
Uppsala universitet (2)
Linnéuniversitetet (1)
Språk
Engelska (25)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (20)
Teknik (5)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy