SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Birnir Bryndis) "

Sökning: WFRF:(Birnir Bryndis)

  • Resultat 1-10 av 96
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Alenkvist, Ida, et al. (författare)
  • Absence of Shb impairs insulin secretion by elevated FAK activity in pancreatic islets
  • 2014
  • Ingår i: Journal of Endocrinology. - 0022-0795 .- 1479-6805. ; 223:3, s. 267-275
  • Tidskriftsartikel (refereegranskat)abstract
    • The Src homology-2 domain containing protein B (SHB) has previously been shown to function as a pleiotropic adapter protein, conveying signals from receptor tyrosine kinases to intracellular signaling intermediates. The overexpression of Shb in β-cells promotes β-cell proliferation by increased insulin receptor substrate (IRS) and focal adhesion kinase (FAK) activity, whereas Shb deficiency causes moderate glucose intolerance and impaired first-peak insulin secretion. Using an array of techniques, including live-cell imaging, patch-clamping, immunoblotting, and semi-quantitative PCR, we presently investigated the causes of the abnormal insulin secretory characteristics in Shb-knockout mice. Shb-knockout islets displayed an abnormal signaling signature with increased activities of FAK, IRS, and AKT. β-catenin protein expression was elevated and it showed increased nuclear localization. However, there were no major alterations in the gene expression of various proteins involved in the β-cell secretory machinery. Nor was Shb deficiency associated with changes in glucose-induced ATP generation or cytoplasmic Ca(2) (+) handling. In contrast, the glucose-induced rise in cAMP, known to be important for the insulin secretory response, was delayed in the Shb-knockout compared with WT control. Inhibition of FAK increased the submembrane cAMP concentration, implicating FAK activity in the regulation of insulin exocytosis. In conclusion, Shb deficiency causes a chronic increase in β-cell FAK activity that perturbs the normal insulin secretory characteristics of β-cells, suggesting multi-faceted effects of FAK on insulin secretion depending on the mechanism of FAK activation.
  •  
2.
  • Babateen, Omar, et al. (författare)
  • Etomidate, propofol and diazepam potentiate GABA-evoked GABAA currents in a cell line derived from Human glioblastoma
  • 2015
  • Ingår i: European Journal of Pharmacology. - : Elsevier BV. - 0014-2999 .- 1879-0712. ; 748, s. 101-107
  • Tidskriftsartikel (refereegranskat)abstract
    • GABAA receptors are pentameric chloride ion channels that are opened by GABA. We have screened a cell line derived from human glioblastoma, U3047MG, for expression of GABAA receptor subunit isoforms and formation of functional ion channels. We identified GABAA receptors subunit α2, α3, α5, β1, β2, β3, δ, γ3, π, and θ mRNAs in the U3047MG cell line. Whole-cell GABA-activated currents were recorded and the half-maximal concentration (EC50) for the GABA-activated current was 36μM. The currents were activated by THIP (4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol) and enhanced by the benzodiazepine diazepam (1μM) and the general anesthetics etomidate and propofol (50μM). In line with the expressed GABAA receptors containing at least the α3β3θ subunits, the receptors were highly sensitive to etomidate (EC50=55nM). Immunocytochemistry identified expression of the α3 and β3 subunit proteins. Our results show that the GABAA receptors in the glial cell line are functional and are modulated by classical GABAA receptor drugs. We propose that the U3047MG cell line may be used as a model system to study GABAA receptors function and pharmacology in glial cells.
  •  
3.
  • Babateen, Omar, et al. (författare)
  • Liraglutide modulates GABAergic signaling in rat hippocampal CA3 pyramidal neurons predominantly by presynaptic mechanism
  • 2017
  • Ingår i: BMC Pharmacology & Toxicology. - : Springer Science and Business Media LLC. - 2050-6511. ; 18
  • Tidskriftsartikel (refereegranskat)abstract
    • Backgroundγ-Aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the brain where it regulates activity of neuronal networks. The receptor for glucagon-like peptide-1 (GLP-1) is expressed in the hippocampus, which is the center for memory and learning. In this study we examined effects of liraglutide, a GLP-1 analog, on GABA signaling in CA3 hippocampal pyramidal neurons.MethodsWe used patch-clamp electrophysiology to record synaptic and tonic GABA-activated currents in CA3 pyramidal neurons in rat hippocampal brain slices.ResultsWe examined the effects of liraglutide on the neurons at concentrations ranging from one nM to one μM. Significant changes of the spontaneous inhibitory postsynaptic currents (sIPSCs) were only recorded with 100 nM liraglutide and then in just ≈50% of the neurons tested at this concentration. In neurons affected by liraglutide both the sIPSC frequency and the most probable amplitudes increased. When the action potential firing was inhibited by tetrodotoxin (TTX) the frequency and amplitude of IPSCs in TTX and in TTX plus 100 nM liraglutide were similar.ConclusionsThe results demonstrate that liraglutide regulation of GABA signaling of CA3 pyramidal neurons is predominantly presynaptic and more limited than has been observed for GLP-1 and exendin-4 in hippocampal neurons.
  •  
4.
  •  
5.
  • Babateen, Omar M., 1983- (författare)
  • GABA signaling regulation by GLP-1 receptor agonists and GABA-A receptors modulator
  • 2016
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • GABA (γ-aminobutyric acid) is the main neuroinhibitory transmitter in mammalian brains.  It binds to GABA-A and GABA-B receptors. The GABA-A receptors are ligand-gated chloride channels. A variety of GABA-A receptor agonists and antagonists have been developed to study the GABA-mediated inhibition and to explore new medications. In this thesis I have examined the role of GABA in brain tumors and the effects of the metabolic hormone GLP-1 on GABAergic signaling in neurons.I studied if GABA-A receptors subunits were expressed and formed functional ion channels in the glioblastoma cell line U3047MG. I identified the mRNA of 11, α2, α3, α5, β1, β2, β3, δ, γ3, π, θ and ρ2, out of the 19 known GABA-A subunits. Immunostaining demonstrated abundant expression of the α3 and β3 subunits. Interestingly, whole-cell GABA-activated currents were recorded in only 12% of the cells. The GABA-activated currents half-maximal concentration (EC50) was 36 µM. The currents were modulated by diazepam (1 µM) and the general anesthetics propofol (50 µM) and etomidate (EC50 = 50 nM).GLP-1 and exendin-4 transiently enhanced the GABA-A receptor-mediated currents in CA3 neurons of the rat hippocampus. The tonic and the spontaneous inhibitory postsynaptic currents increased as compared to control in a concentration dependent manner.  The increase was related to enhanced release of GABA from the presynaptic terminals and increased insertion or affinity of GABA-A receptors in the CA3 postsynaptic neuron. In contrast to GLP-1 and exendin-4, liraglutide enhanced the currents only in a subset of the neurons and the effect was mainly mediated by presynaptic mechanisms. In conclusion, GABA signaling in neurons is modified by the metabolic hormone GLP-1 and its mimetics highlighting the important cross-talk that takes place between the brain and other organs. Medicines modifying GABA signaling in the brain may be important for a number of diseases.  
  •  
6.
  • Barragan, Antonio, et al. (författare)
  • GABAergic signalling in the immune system
  • 2015
  • Ingår i: Acta Physiologica. - : Wiley. - 1748-1708 .- 1748-1716. ; 213:4, s. 819-827
  • Forskningsöversikt (refereegranskat)abstract
    • The GABAergic system is the main inhibitory neurotransmitter system in the central nervous system (CNS) of vertebrates. Signalling of the transmitter c-aminobutyric acid (GABA) via GABA type A receptor channels or G-protein-coupled type B receptors is implicated in multiple CNS functions. Recent findings have implicated the GABAergic system in immune cell functions, inflammatory conditions and diseases in peripheral tissues. Interestingly, the specific effects may vary between immune cell types, with stage of activation and be altered by infectious agents. GABA/GABA-A receptor-mediated immunomodulatory functions have been unveiled in immune cells, being present in T lymphocytes and regulating the migration of Toxoplasma-infected dendritic cells. The GABAergic system may also play a role in the regulation of brain resident immune cells, the microglial cells. Activation of microglia appears to regulate the function of GABAergic neurotransmission in neighbouring neurones through changes induced by secretion of brain-derived neurotrophic factor. The neurotransmitter-driven immunomodulation is a new but rapidly growing field of science. Herein, we review the present knowledge of the GABA signalling in immune cells of the periphery and the CNS and raise questions for future research.
  •  
7.
  • Bhandage, Amol, 1988-, et al. (författare)
  • Expression of calcium release-activated and voltage-gated calcium channels genes in peripheral blood mononuclear cells is altered in pregnancy and in type 1 diabetes
  • 2018
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 13:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Calcium (Ca2+) is an important ion in physiology and is found both outside and inside cells. The intracellular concentration of Ca2+ is tightly regulated as it is an intracellular signal molecule and can affect a variety of cellular processes. In immune cells Ca2+ has been shown to regulate e.g. gene transcription, cytokine secretion, proliferation and migration. Ca2+ can enter the cytoplasm either from intracellular stores or from outside the cells when Ca2+ permeable ion channels in the plasma membrane open. The Ca2+ release-activated (CRAC) channel is the most prominent Ca2+ ion channel in the plasma membrane. It is formed by ORAI1-3 and the channel is opened by the endoplasmic reticulum Ca2+ sensor proteins stromal interaction molecules (STIM) 1 and 2. Another group of Ca-2(+) channels in the plasma membrane are the voltage-gated Ca2+ (Ca-V) channels. We examined if a change in immunological tolerance is accompanied by altered ORAI, STIM and Ca-V gene expression in peripheral blood mononuclear cells (PBMCs) in pregnant women and in type 1 diabetic individuals. Our results show that in pregnancy and type 1 diabetes ORAI1-3 are up-regulated whereas STIM1 and 2 are down-regulated in pregnancy but only STIM2 in type 1 diabetes. Expression of L-, P/Q-, R- and T-type voltage-gated Ca2+ channels was detected in the PBMCs where the Ca(V)2.3 gene was up-regulated in pregnancy and type 1 diabetes whereas the Ca(V)2.1 and Ca(V)3.2 genes were up-regulated only in pregnancy and the Ca(V)1.3 gene in type 1 diabetes. The results are consistent with that expression of ORAI, STIM and Ca-V genes correlate with a shift in immunological status of the individual in health, as during pregnancy, and in the autoimmune disease type 1 diabetes. Whether the changes are in general protective or in type 1 diabetes include some pathogenic components remains to be clarified.
  •  
8.
  • Bhandage, Amol K., 1988-, et al. (författare)
  • AMPA, NMDA and kainate glutamate receptor subunits are expressed in human peripheral blood mononuclear cells (PBMCs) where the expression of GluK4 is altered by pregnancy and GluN2D by depression in pregnant women
  • 2017
  • Ingår i: Journal of Neuroimmunology. - : Elsevier BV. - 0165-5728 .- 1872-8421. ; 305, s. 51-58
  • Tidskriftsartikel (refereegranskat)abstract
    • The amino acid glutamate opens cation permeable ion channels, the iGlu receptors. These ion channels are abundantly expressed in the mammalian brain where glutamate is the main excitatory neurotransmitter. The neurotransmitters and their receptors are being increasingly detected in the cells of immune system. Here we examined the expression of the 18 known subunits of the iGlu receptors families; alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), kainate, N-methyl-D-aspartate (NMDA) and delta in human peripheral blood mononuclear cells (PBMCs). We compared the expression of the subunits between four groups: men, non-pregnant women, healthy pregnant women and depressed pregnant women.Out of 18 subunits of the iGlu receptors, mRNAs for 11 subunits were detected in PBMCs from men and nonpregnant women; AMPA: GluA3, GluA4, kainate: GluK2, GluK4, GluK5, NMDA: GluN1, GluN2C, GluN2D, GluN3A, GluN3B, and delta: GluD1. In the healthy and the depressed pregnant women, in addition, the delta GluD2 subunit was identified. The mRNAs for GluK4, GluK5, GluN2C and GluN2D were expressed at a higher level than other subunits. Gender, pregnancy or depression during pregnancy altered the expression of GluA3, GluK4, GluN2D, GluN3B and GluD1 iGlu subunit mRNAs. The greatest changes recorded were the lower GluA3 and GluK4 mRNA levels in pregnant women and the higher GluN2D mRNA level in healthy but not in depressed pregnant women as compared to non-pregnant individuals. Using subunit specific antibodies, the GluK4, GluK5, GluNl, GluN2C and GluN2D subunit proteins were identified in the PBMCs. The results show expression of specific iGlu receptor subunit in the PBMCs and support the idea of physiology-driven changes of iGlu receptors subtypes in the immune cells.
  •  
9.
  • Bhandage, Amol K., 1988-, et al. (författare)
  • Depression, GABA, and Age Correlate with Plasma Levels of Inflammatory Markers
  • 2019
  • Ingår i: International Journal of Molecular Sciences. - : MDPI. - 1661-6596 .- 1422-0067. ; 20:24
  • Tidskriftsartikel (refereegranskat)abstract
    • Immunomodulation is increasingly being recognised as a part of mental diseases. Here, we examined whether levels of immunological protein markers changed with depression, age, or the inhibitory neurotransmitter gamma-aminobutyric acid (GABA). An analysis of plasma samples from patients with a major depressive episode and control blood donors (CBD) revealed the expression of 67 inflammatory markers. Thirteen of these markers displayed augmented levels in patients compared to CBD. Twenty-one markers correlated with the age of the patients, whereas 10 markers correlated with the age of CBD. Interestingly, CST5 and CDCP1 showed the strongest correlation with age in the patients and CBD, respectively. IL-18 was the only marker that correlated with the MADRS-S scores of the patients. Neuronal growth factors (NGFs) were significantly enhanced in plasma from the patients, as was the average plasma GABA concentration. GABA modulated the release of seven cytokines in anti-CD3-stimulated peripheral blood mononuclear cells (PBMCs) from the patients. The study reveals significant changes in the plasma composition of small molecules during depression and identifies potential peripheral biomarkers of the disease.
  •  
10.
  • Bhandage, Amol K., 1988-, et al. (författare)
  • GABA-A and NMDA receptor subunit mRNA expression is altered in the caudate but not the putamen of the postmortem brains of alcoholics
  • 2014
  • Ingår i: Frontiers in Cellular Neuroscience. - : Frontiers. - 1662-5102. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Chronic consumption of alcohol by humans has been shown to lead to impairment of executive and cognitive functions. Here, we have studied the mRNA expression of ion channel receptors for glutamate and GABA in the dorsal striatum of post-mortem brains from alcoholics (n = 29) and normal controls (n = 29), with the focus on the caudate nucleus that is associated with the frontal cortex executive functions and automatic thinking and on the putamen area that is linked to motor cortices and automatic movements. The results obtained by qPCR assay revealed significant changes in the expression of specific excitatory ionotropic glutamate and inhibitory GABA-A receptor subunit genes in the caudate but not the putamen. Thus, in the caudate we found reduced levels of mRNAs encoding the GluN2A glutamate receptor and the δ, ε, and ρ2 GABA-A receptor subunits, and increased levels of the mRNAs encoding GluD1, GluD2, and GABA-A γ1 subunits in the alcoholics as compared to controls. Interestingly in the controls, 11 glutamate and 5 GABA-A receptor genes were more prominently expressed in the caudate than the putamen (fold-increase varied from 1.24 to 2.91). Differences in gene expression patterns between the striatal regions may underlie differences in associated behavioral outputs. Our results suggest an altered balance between caudate-mediated voluntarily controlled and automatic behaviors in alcoholics, including diminished executive control on goal-directed alcohol-seeking behavior.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 96
Typ av publikation
tidskriftsartikel (84)
doktorsavhandling (6)
annan publikation (4)
forskningsöversikt (1)
bokkapitel (1)
Typ av innehåll
refereegranskat (76)
övrigt vetenskapligt/konstnärligt (20)
Författare/redaktör
Birnir, Bryndis (91)
Jin, Zhe (46)
Korol, Sergiy V (18)
Bhandage, Amol K., 1 ... (11)
Cox, G B (10)
Jin, Yang (9)
visa fler...
Korol, Sergiy (9)
Tierney, M L (7)
Carlsson, Per-Ola (5)
Korpi, Esa R. (5)
Bakalkin, Georgy (4)
Schuster, Jens, Assi ... (4)
Dahl, Niklas (4)
Smits, Anja (4)
Babateen, Omar (4)
Kononenko, Olga (4)
Espes, Daniel, 1985- (4)
Bhandage, Amol K. (4)
Birnir, Bryndis, Pro ... (3)
Bazov, Igor, 1973- (3)
Tafreshiha, Atieh (3)
Howitt, S M (3)
Salehi, S Albert (2)
Huss, Mikael (2)
Groop, Leif (2)
Ekselius, Lisa (2)
Kamali-Moghaddam, Ma ... (2)
Shen, Qiujin (2)
Rorsman, Patrik (2)
Westermark, Bengt (2)
Jönsson, Bo A (2)
Sundström Poromaa, I ... (2)
Fatima, Ambrin (2)
Klar, Joakim, PhD, 1 ... (2)
Zygmunt, Peter (2)
Högestätt, Edward (2)
Ermund, Anna (2)
Anderlid, Britt-Mari ... (2)
Nordgren, Ann (2)
Movahed Rad, Pouya (2)
Hellgren, Charlotte, ... (2)
Uhrbom, Lene (2)
Babateen, Omar M. (2)
Wendt, Anna (2)
Barragan, Antonio (2)
Weidner, Jessica M. (2)
Bhandage, Amol, 1988 ... (2)
Hellgren, Charlotte (2)
Olafsson, Einar (2)
Bhandage, Amol (2)
visa färre...
Lärosäte
Uppsala universitet (94)
Lunds universitet (22)
Karolinska Institutet (6)
Stockholms universitet (4)
Örebro universitet (3)
Umeå universitet (1)
visa fler...
RISE (1)
visa färre...
Språk
Engelska (96)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (85)
Naturvetenskap (8)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy