SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bivik Stadler Caroline 1986 ) "

Sökning: WFRF:(Bivik Stadler Caroline 1986 )

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Arefin, Md Badrul, et al. (författare)
  • Drosophila Neuroblast Selection Is Gated by Notch, Snail, SoxB, and EMT Gene Interplay
  • 2019
  • Ingår i: Cell Reports. - Cambridge, United States : CELL PRESS. - 2211-1247. ; 29:11, s. 3636-3651.e3
  • Tidskriftsartikel (refereegranskat)abstract
    • In the developing Drosophila central nervous system (CNS), neural progenitor (neuroblast [NB]) selection is gated by lateral inhibition, controlled by Notch signaling and proneural genes. However, proneural mutants still generate many NBs, indicating the existence of additional proneural genes. Moreover, recent studies reveal involvement of key epithelial-mesenchymal transition (EMT) genes in NB selection, but the regulatory interplay between Notch signaling and the EMT machinery is unclear. We find that SoxNeuro (SoxB family) and worniu (Snail family) are integrated with the Notch pathway, and constitute the missing proneural genes. Notch signaling, the proneural, SoxNeuro, and worniu genes regulate key EMT genes to orchestrate the NB selection process. Hence, we uncover an expanded lateral inhibition network for NB selection and demonstrate its link to key players in the EMT machinery. The evolutionary conservation of the genes involved suggests that the Notch-SoxB-Snail-EMT network may control neural progenitor selection in many other systems.
  •  
2.
  • Bivik Stadler, Caroline, 1986- (författare)
  • Genetic pathways controlling CNS development : The role of Notch signaling in regulating daughter cell proliferation in Drosophila
  • 2016
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The human central nervous system (CNS) displays the greatest cellular diversity of any organ system, consisting of billions of neurons, of numerous cell sub-types, interconnected in a vast network. Given this enormous complexity, decoding the genetic programs controlling the multistep process of CNS development remains a major challenge. While great progress has been made with respect to understanding sub-type specification, considerably less is known regarding how the generation of the precise number of each sub-type is controlled.The aim of this thesis was to gain deeper knowledge into the regulatory programs controlling cell specification and proliferation. To address these questions I have studied the Drosophila embryonic CNS as a model system, to thereby be able to investigate the genetic mechanisms at high resolution. Despite the different size and morphology between the Drosophila and the mammalian CNS, the lineages of their progenitors share similarity. Importantly for this thesis, both species progenitors show elaborate variations in their proliferation modes, either giving rise to daughters that can directly differentiate into neurons or glia (type 0), divide once (type I), or multiple times (type II).The studies launched off with a comprehensive chemical forward genetic screen, for the very last born cell in the well-studied lineage of progenitor NB5-6T: the Ap4 neuron, which expresses the neuropeptide FMRFa. NB5-6T is a powerful model to use, because it undergoes a programmed type I>0 daughter cell proliferation switch. An FMRF-eGFP transgenic reporter was utilized as readout for successful terminal differentiation of Ap4/FMRFa and thereby proper lineage progression of the ∼20 cells generated. The strongest mutants were mapped to genes with both known and novel essential functions e.g., spatial and temporal patterning, cell cycle control, cell specification and chromatin modification. Subsequently, we focused on some of the genes that showed a loss of function phenotype with an excess of lineage cells. We found that Notch is critical for the type I>0 daughter cell proliferation switch in the NB5-6T lineage and globally as well. When addressing the broader relevance of these findings, and to further decipher the Notch pathway, we discovered that selective groups of E(spl) genes is controlling the switch in a close interplay with four key cell cycle factors: Cyclin E, String, E2F and Dacapo, in most if not all embryonic progenitors. The Notch mediation of the switch is likely to be by direct transcriptional regulation. Furthermore, another gene identified in the screen, sequoia, was investigated. The analysis revealed that sequoia is also controlling the daughter cell switch in the CNS, and this partly through context dependent interactions with the Notch pathway.Taken together, the findings presented in this thesis demonstrate that daughter cell proliferation switches in Drosophila neural lineages are genetically programmed, and that Notch contributes to the triggering of these events. Given that early embryonic processes is frequently shown to be evolutionary conserved, you can speculate that changeable daughter proliferation programs could be applied to mammals, and contribute to a broader understanding of proliferation processes in humans as well. 
  •  
3.
  • Bivik Stadler, Caroline, 1986-, et al. (författare)
  • PIP degron-stabilized Dacapo/p21(Cip)(1) and mutations in ago act in an anti- versus pro-proliferative manner, yet both trigger an increase in Cyclin E levels
  • 2019
  • Ingår i: Development. - : COMPANY BIOLOGISTS LTD. - 0950-1991 .- 1477-9129. ; 146:13
  • Tidskriftsartikel (refereegranskat)abstract
    • During cell cycle progression, the activity of the CycE-Cdk2 complex gates S-phase entry. CycE-Cdk2 is inhibited by CDK inhibitors (CKIs) of the Cip/Kip family, which include the human p21(Cip)(1) and Drosophila Dacapo (Dap) proteins. Both the CycE and Cip/Kip family proteins are under elaborate control via protein degradation, mediated by the Cullin-RING ligase (CRL) family of ubiquitin ligase complexes. The CRL complex SCFFoxw7/Ago targets phosphorylated CycE, whereas p21(Cip)(1) and Dap are targeted by the CRLCdf2 complex, binding to the PIP degron. The role of CRL-mediated degradation of CycE and Cip/Kip proteins during CNS development is not well understood. Here, we analyse the role of ago (Fbxw7)-mediated CycE degradation, and of Dap and p21(Cip)(1) degradation during Drosophila CNS development. We find that ago mutants display over-proliferation, accompanied by elevated CycE expression levels. By contrast, expression of PIP degron mutant Dap and p21(Cip)(1) transgenes inhibit proliferation. However, surprisingly, this is also accompanied by elevated CycE levels. Hence, ago mutation and PIP degron Cip/Kip transgenic expression trigger opposite effects on proliferation, but similar effects on CycE levels.
  •  
4.
  • Bivik Stadler, Caroline, 1986-, et al. (författare)
  • Proactive Construction of an Annotated Imaging Database for Artificial Intelligence Training
  • 2021
  • Ingår i: Journal of digital imaging. - : Springer-Verlag New York. - 0897-1889 .- 1618-727X. ; 34, s. 105-115
  • Tidskriftsartikel (refereegranskat)abstract
    • Artificial intelligence (AI) holds much promise for enabling highly desired imaging diagnostics improvements. One of the most limiting bottlenecks for the development of useful clinical-grade AI models is the lack of training data. One aspect is the large amount of cases needed and another is the necessity of high-quality ground truth annotation. The aim of the project was to establish and describe the construction of a database with substantial amounts of detail-annotated oncology imaging data from pathology and radiology. A specific objective was to be proactive, that is, to support undefined subsequent AI training across a wide range of tasks, such as detection, quantification, segmentation, and classification, which puts particular focus on the quality and generality of the annotations. The main outcome of this project was the database as such, with a collection of labeled image data from breast, ovary, skin, colon, skeleton, and liver. In addition, this effort also served as an exploration of best practices for further scalability of high-quality image collections, and a main contribution of the study was generic lessons learned regarding how to successfully organize efforts to construct medical imaging databases for AI training, summarized as eight guiding principles covering team, process, and execution aspects.
  •  
5.
  • Skoglund, Karin, 1980-, et al. (författare)
  • Colon data from the Visual Sweden project DROID
  • 2019
  • Annan publikationabstract
    • The dataset consists of 101 H&E-stained colon whole slide images (WSI) - 52 abnormal and 49 benign cases. All significant abnormal findings identified are outlined and categorized into 15 types such as hyperplastic polyp, high grade adenocarcinoma and necrosis. Other tissue components such as mucosa, submucosa, as well as the surgical margin are delineated to create a complete histological map. In total, 756 separate annotations have been made to segment the different tissue structures and link them to ontological information.
  •  
6.
  •  
7.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy