SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Bizkarguenaga Ekhine) "

Search: WFRF:(Bizkarguenaga Ekhine)

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Bizkarguenaga, Ekhine, et al. (author)
  • Enrichment of perfluorinated alkyl substances on polyethersulfone using 1-methylpyperidine as ion-pair reagent for the clean-up of carrot and amended soil extracts
  • 2015
  • In: Talanta. - : Elsevier BV. - 0039-9140 .- 1873-3573. ; 143, s. 263-270
  • Journal article (peer-reviewed)abstract
    • The development of a simple, cheap and environment friendly analytical method for the simultaneous determination of different perfluoroalkyl substances (PFASs) including seven perfluoroalkyl carboxylic acids, three perfluoroalkane sulfonic acids and perfluorooctanesulfonamide in carrot and amended soil was carried out in the present work. The method was based on focused ultrasound solid-liquid extraction followed by extract clean-up through enrichment of the target compounds on a polymeric material using an ion-pair reagent and detection by liquid chromatography-tandem mass spectrometry. The following variables affecting the clean-up step were evaluated: the nature of the polymeric material (polyethersulfone, PES, versus silicone rod), the amount of the polymeric material (from 1 to 9 mg), the ion-pair reagent (1-methylpyperidine, 1-MP, versus tetrabutylammonium salts), the concentration of the ion-pair reagent (from 5 to 50 mM) and the extraction time (from 15 min to 24 h). Optimum clean-up conditions were obtained using preconcentration on 9 mg of PES polymeric material combined with 5 mM 1-MP as ion-pair reagent for 3 h. The method was validated in terms of apparent recoveries in the range of 77-140% and 95-137% at the low concentration (50 ng g(-1)) and in the range of 70-136% and 79-132% at the high concentration (290 ng g(-1)) for amended soil and carrot, respectively, after correction with the corresponding labeled standards. Precision, as relative standard deviation, was within 2-23%, while method detection limits were 0.31-2.85 ng g(-1) for amended soil and 0.11-1.83 ng g(-1) for carrot. In the absence of a certified reference material for the target analytes in the matrices studied, inter-method comparison was carried out and the same samples were processed using two independent clean-up procedures, the one developed in the present work and a classical based on solid-phase extraction. Statistically comparable results were obtained according to the one-way analysis of variance for peel, core, leaves as well as amended soil (F-Calc= 2.59, 5.06, 5.82 and 2.34 < F-Crit= 7.71). Finally, the method was applied for the determination of PFASs in uptake experiments where carrots were cultivated in an amended soil polluted with perfluorooctane sulfonic acid (PFOS) at 500 ng g(-1) level. The highest concentration was measured in the carrot leaves (669 ng g(-1)), while the concentrations in peel and core were at the same level (72 ng g(-1) and 62 ng g(-1) respectively), concluding that translocation of PFOS from the soil to the leaves had occurred.
  •  
2.
  •  
3.
  • Nascimento, Rodrigo A., et al. (author)
  • Sulfluramid use in Brazilian agriculture : A source of per- and polyfluoroalkyl substances (PFASs) to the environment
  • 2018
  • In: Environmental Pollution. - : Elsevier BV. - 0269-7491 .- 1873-6424. ; 242, s. 1436-1443
  • Journal article (peer-reviewed)abstract
    • N-Ethyl perfluorooctane sulfonamide (EtFOSA) is a perfluorooctane sulfonate (PFOS) precursor and the active ingredient in sulfluramid, a pesticide which is used extensively in Brazil for management of leaf cutting ants. Here we investigate the occurrence of EtFOSA, PFOS, and other per- and polyfluoroalkyl substances (PFASs) in soil, eucalyptus leaves, water (ground, riverine, and coastal (estuarine/marine)) and coastal sediment from an agricultural region of Bahia State, Brazil. This area contains a larger number of eucalyptus plantations where sulfluramid is suspected to be applied. Soil, leaves, and coastal water (marine/estuarine) contained Sigma PFAS concentrations of up to 5400 pg g(-1), 979 pg g(-1), and 1020 pg L-1, respectively, with PFAS profiles generally dominated by PFOS and perfluorooctane sulfonamide (FOSA). Coastal sediment contained Sigma PFAS concentrations of up to 198 pg g(-1), with PFOS, FOSA, and perfluorooctanoic acid (PFOA) being the most frequently observed PFASs. These substances are all potential EtFOSA transformation products, pointing to sulfluramid as a possible source. In riverine water, Sigma PFAS concentrations of up to 8930 pg L-1 were observed. PFOS and PFOA were detected in all river water samples. Groundwater also exhibited PFAS contamination (5730 pg L-1 EPFAS5), likely from sulfluramid use. The observation of other PFASs (e.g. perfluorobutanoic acid) in freshwater suggests that other PFAS sources (in addition to sulfluramid) may be important in this region. Overall, these data support the hypothesis that sulfluramid use contributes to the occurrence of PFASs in the Brazilian environment.
  •  
4.
  • Zabaleta, Itsaso, et al. (author)
  • Biodegradation and Uptake of the Pesticide Sulfluramid in a Soil-Carrot Mesocosm
  • 2018
  • In: Environmental Science and Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 52:5, s. 2603-2611
  • Journal article (peer-reviewed)abstract
    • N-ethyl perfluorooctane sulfonamide (EtFOSA) is the active ingredient of Sulfluramid, a pesticide which is used extensively in South America for control of leaf-cutting ants. Despite being a known precursor to perfluorooctanesulfonate (PFOS), the importance of EtFOSA as a source of environmental PFOS remains unclear. In the present work, uptake, leaching, and biodegradation of EtFOSA and its transformation products were assessed over 81 days in soil-carrot (Daucus carota ssp sativus) mesocosms for the first time. Experiments performed in the presence of carrot produced PFOS yields of up to 34% using a technical EtFOSA standard and up to 277% using Grao Forte, a commercial Sulfluramid bait formulation containing 0.0024% EtFOSA. Perfluorooctane sulfonamido acetate (FOSAA), perfluorooctane sulfonamide (FOSA), and perfluorooctanoic acid (PFOA) also formed over the course of the experiments, with the latter substance attributed to the presence of perfluorooctanamide impurities. The leachate contained low levels of transformation products and a high FOSA:PFOS ratio, consistent with recent observations in Brazilian surface water. In carrots, the more hydrophilic transformation products (e.g., PFOS) occurred primarily in the leaves, while the more hydrophobic products (e.g., FOSA, FOSAA, and EtFOSA) occurred in the peel and core. Remarkably, isomer-specific analysis revealed that the linear EtFOSA isomer biodegraded significantly faster than branched isomers. These data collectively show that the application of Sulfluramid baits can lead to the occurrence of PFOS in crops and in the surrounding environment, in considerably higher yields than previously thought.
  •  
5.
  • Zabaleta, Itsaso, et al. (author)
  • Biotransformation of 8 : 2 polyfluoroalkyl phosphate diester in gilthead bream (Sparus aurata)
  • 2017
  • In: Science of the Total Environment. - : Elsevier BV. - 0048-9697 .- 1879-1026. ; 609, s. 1085-1092
  • Journal article (peer-reviewed)abstract
    • Polyfluoroalkyl phosphate esters (PAPs) are high production volume surfactants used in the food contact paper and packaging industry. PAPs may transform to persistent perfluoroalkyl carboxylic acids (PFCAs) under biotic conditions, but little is known about their fate and behavior in aquatic organisms. Here we report for the first time on the uptake, tissue distribution, and biotransformation of 8:2 polyfluoroalkyl phosphate diester (8:2 diPAP) in fish. Gilt-head bream (Sparus aurata) were dosed via the diet (8:2 diPAP at 29 mu g/g) for 7 days, during which time 8:2 diPAP and its transformation products were monitored in plasma, liver, muscle, gills, bile and brain. 8:2 diPAP tended to accumulate in liver, plasma and gills, and to a lesser extent in muscle, bile and brain. Several transformation products (observed previously in other organisms) were also observed inmost tissues and biofluids, including both saturated and unsaturated fluorotelomer acids (8:2 FTCA, 8:2 FTUCA, 7:3 FTCA), and perfluorooctanoic acid (PFOA). 8:2 FTCA was the major metabolite in all tissues/biofluids, except for bile, where PFOA occurred at the highest concentrations. Unexpectedly high PFOA levels (up to 3.7 ng/g) were also detected in brain. Phase 2 metabolites, which have been reported in fish following exposure to fluorotelomer alcohols, were not observed in these experiments, probably due to their low abundance. Nevertheless, the detection of PFOA indicates that exposure to PAPs may be an indirect route of exposure to PFCAs in fish.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view