SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Björefors Fredrik Docent) "

Sökning: WFRF:(Björefors Fredrik Docent)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Huang, Xiao, 1987- (författare)
  • Conducting Redox Polymers for Electrode Materials : Synthetic Strategies and Electrochemical Properties
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Organic electrode materials represent an intriguing alternative to their inorganic counterparts due to their sustainable and environmental-friendly properties. Their plastic character allows for the realization of light-weight, versatile and disposable devices for energy storage. Conducting redox polymers (CRPs) are one type of the organic electrode materials involved, which consist of a π-conjugated polymer backbone and covalently attached redox units, the so-called pendant. The polymer backbone can provide conductivity while it is oxidized or reduced (i. e., p- or n-doped) and the concurrent redox chemistry of the pendant provides charge capacity. The combination of these two components enables CRPs to provide both high charge capacity and high power capability. This dyad polymeric framework provides a solution to the two main problems associated with organic electrode materials based on small molecules: the dissolution of the active material in the electrolyte, and the sluggish charge transport within the material. This thesis introduces a general synthetic strategy to obtain the monomeric CRPs building blocks, followed by electrochemical polymerization to afford the active CRPs material. The choice of pendant and of polymer backbone depends on the potential match between these two components, i.e. the redox reaction of the pendant and the doping of backbone occurring within the same potential region. In the thesis, terephthalate and polythiophene were selected as the pendant and polymer backbone respectively, to get access to low potential CRPs. It was found that the presence of a non-conjugated linker between polymer backbone and pendant is essential for the polymerizability of the monomers as well as for the preservation of individual redox activities. The resulting CRPs exhibited fast charge transport within the polymer film and low activation barriers for charge propagation. These low potential CRPs were designed as the anode materials for energy storage applications. The combination of redox active pendant as charge carrier and a conductive polymer backbone reveals new insights into the requirements of organic matter based electrical energy storage materials.
  •  
2.
  • Rattfält, Linda, 1979- (författare)
  • Smartware electrodes for ECG measurements : Design, evaluation and signal processing
  • 2013
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The aim of this thesis work has been to study textile and screen printed smartware electrodes for electrocardiographic (ECG) measurements both in terms of their electrode properties and possibility to further improve their robustness to movement induced noise by using signal processing. Smartware electrodes for ECG measurements have previously been used in various applications but basic electrical electrode properties have not sufficiently been looked into. Furthermore, we believe that there is a possibility to reduce disturbances in the smartware ECG by adding redundant sensors and applying sensor fusion signal processing.Electrical properties of conductive textiles have been evaluated in terms of stability and electrode impedance. Three yarns and textile electrode surfaces were tested. The electrodes made from pure stainless steel and 50\% stainless steel/ 50\% polyester showed acceptable stability of electrode potentials. All electrode measurements were performed on skin.Furthermore, we produced six screen printed electrodes and their electrical performance was investigated in an electrochemical cell. The tested inks contained carbon or silver particles in the conduction lines, and Ag/AgCl particles in the electrode surface. Results show that all electrodes were stable in time, with a maximum drift of a few mV during 30 minutes. The silver ink is superior to the carbon based in terms of electrode impedance at the higher frequencies.To extract viable physiological information from noisy signals, canonical correlation analysis (CCA) was applied on multi-channel ECG signals recorded with textile electrodes. Using CCA to solve the blind source separation (BSS) problem, we intended to separate the ECG signal from the various noise sources. The method (CCABSS) was compared to averaging of the ECG channels and to the independent component analysis method (ICA). In the dataset consisting of noisy ECG recordings, the signal was uninterpretable in 7% after CCABSS. Corresponding values for averaging and ICA were 33% and 17%, respectively.Smartware applications often include heartbeat detection while moving, a measurement situation which is prone to produce noise corrupted ECG signals. To compensate for this, we used an event detector based on a multi-channel input, a model of the event and weighted correlation. For measurements at rest and static muscle tension, the sensitivity of the event detector was 97% and 77% respectively. Corresponding values for the golden standard detector Pan-Tompkins were 96% and 52%, respectively. 
  •  
3.
  • Sobkowiak, Adam, 1985- (författare)
  • LiFeSO4F as a Cathode Material for Lithium-Ion Batteries : Synthesis, Structure, and Function
  • 2015
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • In this thesis, two recently discovered polymorphs of LiFeSO4F, adopting a tavorite- and triplite-type structure, were investigated as potential candidates for use as cathode materials in Li-ion batteries. The studies aimed at enriching the fundamental understanding of the synthetic preparations, structural properties, and electrochemical functionality of these materials.By in situ synchrotron X-ray diffraction (XRD), the formation mechanism of the tavorite-type LiFeSO4F was followed starting from two different sets of precursors, FeSO4∙H2O + LiF, and Li2SO4 + FeF2. The results indicated that the formation of LiFeSO4F is possible only through the structurally related FeSO4∙H2O, in line with the generally recognized topotactic reaction mechanism. Moreover, an in-house solvothermal preparation of this polymorph was optimized with the combined use of XRD and Mössbauer spectroscopy (MS) to render phase pure and well-ordered samples. Additionally, the triplite-type LiFeSO4F was prepared using a facile high-energy ball milling procedure.The electrochemical performance of as-prepared tavorite LiFeSO4F was found to be severely restricted due to residual traces of the reaction medium (tetraethylene glycol (TEG)) on the surface of the synthesized particles. A significantly enhanced performance could be achieved by removing the TEG residues by thorough washing, and a subsequent application of an electronically conducting surface coating of p-doped PEDOT. The conducting polymer layer assisted the formation of a percolating network for efficient electron transport throughout the electrode, resulting in optimal redox behavior with low polarization and high capacity. In the preparation of cast electrodes suitable for use in commercial cells, reducing the electrode porosity was found to be a key parameter to obtain high-quality electrochemical performance. The triplite-type LiFeSO4F showed similar improvements upon PEDOT coating as the tavorite-type polymorph, but with lower capacity and less stable long-term cycling due to intrinsically sluggish kinetics and unfavorable particle morphology.Finally, the Li+-insertion/extraction process in tavorite LiFeSO4F was investigated. By thorough ex situ characterization of chemically and electrochemically prepared LixFeSO4F compositions (0≤x≤1), the formation of an intermediate phase, Li1/2FeSO4F, was identified for the first time. These findings helped redefine the (de)lithiation mechanism which occurs through two subsequent biphasic reactions, in contrast to a previously established single biphasic process.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy