SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bjørnerud Atle) "

Sökning: WFRF:(Bjørnerud Atle)

  • Resultat 1-10 av 24
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Bjørnerud, Atle, et al. (författare)
  • Assessment of T1 and T2* effects in vivo and ex vivo using iron oxide nanoparticles in steady state : dependence on blood volume and water exchange
  • 2002
  • Ingår i: Magnetic Resonance in Medicine. - : Wiley. - 0740-3194 .- 1522-2594. ; 47:3, s. 461-471
  • Tidskriftsartikel (refereegranskat)abstract
    • Accurate knowledge of the relationship between contrast agent concentration and tissue relaxation is a critical requirement for quantitative assessment of tissue perfusion using contrast-enhanced MRI. In the present study, using a pig model, the relationship between steady-state blood concentration levels of an iron oxide nanoparticle with a hydrated diameter of 12 nm (NC100150 Injection) and changes in the transverse and longitudinal relaxation rates (1/T2* and 1/T1, respectively) in blood, muscle, and renal cortex was investigated at 1.5 T. Ex vivo measurements of 1/T2* and 1/T1 were additionally performed in whole pig blood spiked with different concentrations of the iron oxide nanoparticle. In renal cortex and muscle, 1/T2* increased linearly with contrast agent concentration with slopes of 101 +/-22 s(-1)mM(-1) and 6.5 +/-0.9 s(-1)mM(-1) (mean +/- SD), respectively. In blood, 1/T2* increased as a quadratic function of contrast agent concentration, with different quadratic terms in the ex vivo vs. the in vivo experiments. In vivo, 1/T1 in blood increased linearly with contrast agent concentration, with a slope (T1-relaxivity) of 13.9 +/- 0.9 s(-1)mM(-1). The achievable increase in 1/T1 in renal cortex and muscle was limited by the rate of water exchange between the intra- and extravascular compartments and the 1/T1-curves were well described by a two-compartment water exchange limited relaxation model.
  •  
4.
  • Bjørnerud, Atle, 1962- (författare)
  • Proton Relaxation Properties of a Particulate Iron Oxide MR Contrast Agent in Different Tissue Systems : Implications for Imaging
  • 2002
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Knowledge of the relationship between in vivo contrast agent concentration and magnetic resonance (MR) signal response is an important requirement in contrast enhanced MR imaging in general and in MR based perfusion imaging in particular. This relationship is a complex function of the properties of the contrast agent as well as the structure of the target tissue. The aim of the present work was to quantify the effects of the iron oxide nanoparticle based intravascular contrast agent, NC100150 Injection, on proton relaxation rates in different tissue systems in vivo in a pig model and ex vivo in phantoms containing whole blood. Methods that enabled accurate relaxation rate measurements in these organs were developed, and validated. From these measurements, trans-compartmental water exchange rates and blood volume could be estimated and the MR signal response could be predicted as a function of contrast agent concentration under relevant imaging conditions. Using a 1.5 Tesla clinical MR system, the longitudinal (R1=1/T1) proton relaxation rates in blood, renal cortex, paraspinal muscle and myocardium were measured in vivo as a function of plasma concentration (Cp) of NC100150 Injection. The transverse (R2* = 1/T2*) relaxation rates were measured in vivo in blood, renal cortex and muscle as a function of Cp and ex vivo in blood as a function of Cp and blood oxygenation tension. The proton nuclear MR (NMR) linewidth and lineshape were analysed as a function of Cp and blood oxygen tension ex vivo at 7.05 T. In muscle and renal cortex, there was a linear correlation between R2* and Cp whereas R2* increased as a quadratic function of Cp in blood. The NMR linewidth increased linearly with Cp in fully oxygenated blood whereas in deoxygenated blood the linewidth initially decreased with increasing Cp, reaching a minimum and then increasing again with further increase in Cp. R1 increased linearly with Cp in blood and from the slope of R1 vs. Cp the T1-relaxivity (r1) of NC100150 Injection in blood at 1.5 T was estimated to be (mean ± SD) 13.9 ± 0.9 s-1mM-1. In tissue, the maximum increase in R1 was limited by the rate of water exchange between the intravascular and interstitial tissue compartments. Using a two-compartment exchange-limited relaxation model, the permeability surface area (PS) product was estimated to be 61.9 ± 2.9 mL/min/g in renal cortex and 10.1 ± 1.5 mL/min/g in muscle and the total myocardial water exchange rate, kt, was 13.5 ± 6.4 s-1. The estimated blood volumes obtained from the same model were 19.1 ± 1.4 mL/100 g, 2.4 ± 1.4 mL/100 g and 11.2 ± 2.1 mL/100 g, respectively in renal cortex, muscle and myocardium.Current T2* based first-pass MR perfusion methods assume a linear correlation between R2* and Cp both in blood and tissue and our results therefore suggest that quantitative perfusion values can not easily be obtained with existing tracer kinetic models. The correlation between MR signal response and Cp is further complicated in the kidney by a significant first-pass increase in R1 which may lead to an underestimation of Cp. In T1-based perfusion methods, low concentrations of NC100150 Injection must be used in order to maintain a linear dose-response relationship between R1 and Cp. The effect of blood oxygenation on the NMR linewidth in the presence of NC100150 Injection enabled accurate estimation of magnetic susceptibility of deoxyhemoglobin and the effect can potentially be used to determine blood oxygenation status.In conclusion, NC100150 Injection is well suited as a T2* perfusion agent due to the large magnetisation and intravascular biodistribution of this agent. T1-based perfusion imaging with this agent is limited by water exchange effects and large T2* effects at higher contrast agent concentrations. Quantitative perfusion assessment is unlikely to be feasible with any of these approaches due to the non-linear dose response.
  •  
5.
  • Bjørnerud, Atle, et al. (författare)
  • Renal T(*)(2) perfusion using an iron oxide nanoparticle contrast agent : influence of T(1) relaxation on the first-pass response
  • 2002
  • Ingår i: Magnetic Resonance in Medicine. - : Wiley. - 0740-3194 .- 1522-2594. ; 47:2, s. 298-304
  • Tidskriftsartikel (refereegranskat)abstract
    • Quantitative perfusion measurements require accurate knowledge of the correlation between first-pass signal changes and the corresponding tracer concentration in tissue. In the present study, a detailed analysis of first-pass renal cortical changes in T(1) and T(*)(2) following bolus injection of the iron oxide nanoparticle NC100150 Injection was investigated in a pig model using a double-echo gradient-echo sequence. The estimated change in 1/T(*)(2) during first pass calculated from single-echo sequences was compared to the true double-echo-derived 1/T(*)(2) curves. Using a single-echo (TE = 6 ms) spoiled gradient-echo sequence, the first-pass 1/T(*)(2) response following a bolus injection of 1 mg Fe/kg of NC100150 Injection was significantly underestimated due to counteracting T(1) effects. Signal response simulations showed that the relative error in the first-pass response decreased with increasing TE and contrast agent dose. However, both the maximum TE and the maximum dose are limited by excessive cortical signal loss, and the maximum TE is further limited by high temporal resolution requirements. The problem of T(1) contamination can effectively be overcome by using a double-echo gradient-echo sequence. This yields a first-pass response that truly reflects the tissue tracer concentration, which is a critical requirement for quantitative renal perfusion assessment.
  •  
6.
  •  
7.
  •  
8.
  • Briley Saebo, Karen, 1964- (författare)
  • Degradation, Metabolism and Relaxation Properties of Iron Oxide Particles for Magnetic Resonance Imaging
  • 2004
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Whereas the effect of size and coating material on the pharmacokinetics and biodistribution of iron oxide based contrast agents are well documented, the effect of these parameters on liver metabolism has never been investigated. The primary purpose of this work was to evaluate the effect of iron oxide particle size and coating on the rate of liver clearance and particle degradation using a rat model. The magnetic and relaxation properties of five different iron oxide contrast agents were determined prior to the onset of the animal studies. The R2* values and the T1-enhancing efficacy of the agents were also evaluated in blood using phantom models. The results of these studies indicated that the efficacy of these agents was matrix and frequency dependent. Correlations between the R2* values and the magnetic properties of the agents were established and a new parameter, Msat/r1, was created to enable better estimations of contrast agent T1-enhancing efficacy in blood. The bio-distribution of one of the agents was also evaluated to assess the importance of sub-cellular particle distribution, using an isolated rat liver cell model. Phantom models were also used to verify that materials with magnetic properties similar to the particle breakdown products (ferritin/hemosiderin) may induce signal reduction when compartmentalized in a liver cell suspension. The results revealed that the cellular distribution of the agent did not influence the rate of particle degradation. This finding conflicted with current theory. Additionally, the study indicated that the compartmentalization of magnetic materials similar to ferritin may induce significant signal loss.Methods enabling the accurate determination of contrast agent concentration in the liver were developed and validated using one of the agents. From these measurements the liver half-life of the agent was estimated and compared to the rate of liver clearance, as determined from the evolution of the effective transverse relaxation rate (R2*) in rat liver. The results indicate that the liver R2* enhancement persisted at time points when the concentration of contrast agent present in the liver was below method detection limits. The prolonged R2* enhancement was believed to be a result of the compartmentalisation of the particle breakdown products within the liver cells. Finally, the liver clearance and degradation rates of the five different iron oxide particles in rat liver were evaluated. The results revealed that for materials with similar iron oxide cores and particle sizes, the rate of liver clearance was affected by the coating material present. Materials with similar coating, but different sizes, exhibited similar rates of liver clearance.In conclusion, the results of this work strongly suggest that coating material of the iron oxide particles may contribute significantly to the rate of iron oxide particle clearance and degradation in rat liver cells.
  •  
9.
  • Briley Saebo, Karen, et al. (författare)
  • Hepatic cellular distribution and degradation of iron oxide nanoparticles following single intravenous injection in rats : implications for magnetic resonance imaging
  • 2004
  • Ingår i: Cell and Tissue Research. - : Springer Science and Business Media LLC. - 0302-766X .- 1432-0878. ; 316:3, s. 315-323
  • Tidskriftsartikel (refereegranskat)abstract
    • The purpose of this study was to determine the cellular distribution and degradation in rat liver following intravenous injection of superparamagnetic iron oxide nanoparticles used for magnetic resonance imaging (NC100150 Injection). Relaxometric and spectrophotometric methods were used to determine the concentration of the iron oxide nanoparticles and their degradation products in isolated rat liver parenchymal, endothelial and Kupffer cell fractions. An isolated cell phantom was also constructed to quantify the effect of the degradation products on the loss of MR signal in terms of decreased transverse relaxation times, T2*. The results of this study show that iron oxide nanoparticles found in the NC100150 Injection were taken up and distributed equally in both liver endothelial and Kupffer cells following a single 5 mg Fe/kg body wt. bolus injection in rats. Whereas endothelial and Kupffer cells exhibited similar rates of uptake and degradation, liver parenchymal cells did not take up the NC100150 Injection iron oxide particles. Light-microscopy methods did, however, indicate an increased iron load, presumably as ferritin/hemosiderin, within the hepatocytes 24 h post injection. The study also confirmed that compartmentalisation of ferritin/hemosiderin may cause a significant decrease in the MRI signal intensity of the liver. In conclusion, the combined results of this study imply that the prolonged presence of breakdown product in the liver may cause a prolonged imaging effect (in terms of signal loss) for a time period that significantly exceeds the half-life of NC100150 Injection iron oxide nanoparticles in liver.
  •  
10.
  • Briley Saebo, Karen, et al. (författare)
  • Long-term imaging effects in rat liver after a single injection of an iron oxide nanoparticle based MR contrast agent
  • 2004
  • Ingår i: Journal of Magnetic Resonance Imaging. - : Wiley. - 1053-1807 .- 1522-2586. ; 20:4, s. 622-631
  • Tidskriftsartikel (refereegranskat)abstract
    • PURPOSE: To investigate the duration of liver R2* enhancement and pharmacokinetics following administration of an iron oxide nanoparticle in a rat model.MATERIALS AND METHODS: Rats were injected with 0, 1, 2, or 5 mg Fe/kg of NC100150 Injection, and quantitative in vivo 1/T2* liver measurements were obtained between 1 and 133 days after injection. The concentration of NC100150 Injection was determined by relaxometry methods in ex vivo rat liver homogenate.RESULTS: At all dose levels, 1/T2* remained greater than control values up to 63 days after injection. In the highest dose group, 1/T2* was above control levels during the entire 133 day time-course investigated. There were no quantifiable amounts of NC100150 Injection present 63 days after injection in any of the dose groups. The half-life of NC100150 Injection in rat liver was dose dependent. For the lowest dose group, the degradation of the particles could be defined by a mono-exponential function with a half-life of eight days. For the 2 and 5 mg Fe/kg dose groups, the degradation was bi-exponential with a fast initial decay of seven to eight days followed by a slow terminal decay of 43-46 days.CONCLUSION: NC100150 Injection exhibits prolonged 1/T2* enhancement in rat liver. The liver enhancement persisted at time points when the concentration of iron oxide particles present in the liver was below method detection limits. The prolonged 1/T2* enhancement is likely a result of the particle breakdown products and the induction of ferritin and hemosiderin with increasing iron cores/loading factors.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 24
Typ av publikation
tidskriftsartikel (19)
doktorsavhandling (3)
annan publikation (1)
licentiatavhandling (1)
Typ av innehåll
refereegranskat (19)
övrigt vetenskapligt/konstnärligt (5)
Författare/redaktör
Bjørnerud, Atle (22)
Ahlström, Håkan (15)
Johansson, Lars (6)
Morell, Arvid (4)
Briley Saebo, Karen (4)
Johansson, Lars O. (3)
visa fler...
Thelin, Stefan (3)
Selnes, Per (3)
Lennmyr, Fredrik (3)
Blennow, Kaj, 1958 (2)
Zetterberg, Henrik, ... (2)
Aarsland, Dag (2)
Fladby, Tormod (2)
Bjerner, Tomas (2)
Johnsson, Cecilia (2)
Ahlström, Håkan K. (2)
Jonsson, Ove (2)
Hustvedt, Svein Olaf (2)
Pettersson, Jean (1)
Bergquist, Jonas (1)
Harrison, Peter (1)
Wikström, Gerhard (1)
Knutsson, Linda (1)
Lundström, Elin (1)
Suárez-Calvet, Marc (1)
Karikari, Thomas (1)
Wasselius, Johan (1)
Beyer, Mona K (1)
Ahlström, Håkan, Pro ... (1)
Ullberg, Teresa (1)
González-Ortiz, Fern ... (1)
Kirsebom, Bjørn Eivi ... (1)
Nilsson, Johanna, 19 ... (1)
Reneman, Liesbeth (1)
Schrantee, Anouk (1)
Hayden, Kathleen M. (1)
Ericsson, Anders (1)
Briley-Soebo, Karen (1)
Briley-Sæbø, Karen (1)
Bjørnerud, Atle, 196 ... (1)
Wright, Graham A., P ... (1)
Wendland, M F (1)
Higgins, C B (1)
Oksendal, A (1)
Goussin, Yves (1)
Roch, Alan (1)
Muller, Robert N. (1)
Briley Saebo, Karen, ... (1)
Knopp, Michael, Prof ... (1)
Grant, Derek (1)
visa färre...
Lärosäte
Uppsala universitet (20)
Göteborgs universitet (2)
Lunds universitet (2)
Karolinska Institutet (2)
Språk
Engelska (21)
Odefinierat språk (3)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (15)
Naturvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy