SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bjerkén Anna) "

Sökning: WFRF:(Bjerkén Anna)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • af Bjerkén, Sara, et al. (författare)
  • Noradrenaline is crucial for the substantia nigra dopaminergic cell maintenance
  • 2019
  • Ingår i: Neurochemistry International. - : Elsevier. - 0197-0186 .- 1872-9754. ; 131
  • Tidskriftsartikel (refereegranskat)abstract
    • In Parkinson's disease, degeneration of substantia nigra dopaminergic neurons is accompanied by damage on other neuronal systems. A severe denervation is for example seen in the locus coerulean noradrenergic system. Little is known about the relation between noradrenergic and dopaminergic degeneration, and the effects of noradrenergic denervation on the function of the dopaminergic neurons of substantia nigra are not fully understood. In this study, N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP4) was injected in rats, whereafter behavior, striatal KCl-evoked dopamine and glutamate releases, and immunohistochemistry were monitored at 3 days, 3 months, and 6 months. Quantification of dopamine-beta-hydroxylase-immunoreactive nerve fiber density in the cortex revealed a tendency towards nerve fiber regeneration at 6 months. To sustain a stable noradrenergic denervation throughout the experimental timeline, the animals in the 6-month time point received an additional DSP4 injection (2 months after the first injection). Behavioral examinations utilizing rotarod revealed that DSP4 reduced the time spent on the rotarod at 3 but not at 6 months. KCl-evoked dopamine release was significantly increased at 3 days and 3 months, while the concentrations were normalized at 6 months. DSP4 treatment prolonged both time for onset and reuptake of dopamine release over time. The dopamine degeneration was confirmed by unbiased stereology, demonstrating significant loss of tyrosine hydroxylase-immunoreactive neurons in the substantia nigra. Furthermore, striatal glutamate release was decreased after DSP4. In regards of neuroinflammation, reactive microglia were found over the substantia nigra after DSP4 treatment. In conclusion, long-term noradrenergic denervation reduces the number of dopaminergic neurons in the substantia nigra and affects the functionality of the nigrostriatal system. Thus, locus coeruleus is important for maintenance of nigral dopaminergic neurons.
  •  
2.
  • Bjerkén, Anna, et al. (författare)
  • Dose evaluation of simultaneous breast radiography and mechanical imaging
  • 2023
  • Ingår i: Medical Imaging 2023 : Physics of Medical Imaging - Physics of Medical Imaging. ; 12463
  • Konferensbidrag (refereegranskat)abstract
    • This study investigates the impact in terms of radiation dose when performing simultaneous digital breast tomosynthesis(DBT) and mechanical imaging (MI) – DBTMI. DBTMI has demonstrated the potential to increase specificity of cancerdetection, and reduce unnecessary biopsies, as compared to digital mammography (DM) screening. The presence of theMI sensor during simultaneous image acquisition may increase the radiation dose when automatic exposure control is used.In this project, a radiation dose study was conducted on clinically available breast imaging systems with and without theMI sensor. We have investigated three approaches to analyse the dose increase in DBTMI, using (i) the estimates of averageglandular dose (AGD) reported in DICOM headers of radiography images; (ii) AGD measured by a conventionaldosemeter; and (iii) AGD measured by optically stimulated luminescence using NaCl pellets. The relative increase in AGDestimated from DICOM headers when using the MI sensor was on average 10.7% and 12.4%, for DM and DBTmeasurements, respectively. The relative increase in AGD using the conventional dosemeter was 11.2% in DM mode and12.2% in DBT mode. The relative increase in AGD using NaCl pellets was 14.6% in DM mode. Our measurements suggestthat the use of simultaneous breast radiography and MI increases the AGD by 13% on average. The increase in dose is stillbelow the acceptable values in mammography screening recommended by the European Guidelines.
  •  
3.
  • Blomqvist, Jakob, et al. (författare)
  • Structure and Thermodynamical Properties of Zirconium Hydrides from First-Principle
  • 2012
  • Ingår i: Proceedings of the 15th international conference on environmental degradation of materials in nuclear power systems-water reactors. - Hoboken, New Jersey, Canada : John Wiley & Sons. - 9781118132418 - 9781118456835 ; , s. 671-679
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Zirconium alloys are used as nuclear fuel cladding material due to their mechanical and corrosion resistant properties together with their favorable cross-section for neutron scattering. At running conditions, however, there will be an increase of hydrogen in the vicinity of the cladding surface at the water side of the fuel.The hydrogen will diffuse into the cladding material and at certain conditions, such as lower temperatures and external load, hydrides will precipitate out in the material and cause well known embrittlement, blistering and other unwanted effects. Using phase-field methods it is now possible to model precipitation build-up in metals, for example as a function of hydrogen concentration, temperature and external load, but the technique relies on input of parameters, such as the formation energy of the hydrides and matrix. To that end, we have computed, using the density functional theory (DFT) code GPAW, the latent heat of fusion as well as solved the crystal structure for three zirconium hydride polymorphs: delta-ZrH1.6, gamma-ZrH, and epsilon-ZrH2.
  •  
4.
  • Costa, Arthur C., et al. (författare)
  • Assessment of projection interpolation to compensate for the increased radiation dose in DBTMI
  • 2023
  • Ingår i: Medical Imaging 2023 : Physics of Medical Imaging - Physics of Medical Imaging. - 1605-7422. - 9781510660311 ; 12463
  • Konferensbidrag (refereegranskat)abstract
    • The combination of digital breast tomosynthesis (DBT) with other imaging modalities has been investigated in order to improve the detection and diagnosis of breast cancer. Mechanical Imaging (MI) measures the stress over the surface of the compressed breast, using a pressure sensor, during radiographic examination and its response has shown a correlation with the presence of malignant lesions. Thus, the combination of DBT and MI (DBTMI) has shown potential to reduce false positive results in breast cancer screening. However, compared to the conventional DBT exam, the presence of the MI sensor during mammographic image acquisition may cause a slight increase in the radiation dose. This work presents a proposal to reduce the radiation dose in DBTMI exams by removing some projections from the original set and replacing them with synthetic projections generated by a video frame interpolation (VFI) neural network. We compared several DBTMI acquisition arrangements, considering the removal of 16% of the original projections, using a deformable physical breast phantom, and evaluated the quality of the reconstructed images based on the Normalized Root Mean Squared Error (NRMSE). The results showed that, for some arrangements, the slices reconstructed with the addition of synthetic DBTMI projections presented better quality than when they were reconstructed with the reduced set of projections. Further studies must be carried out to optimize the interpolation approach.
  •  
5.
  • Olsson, Pär, et al. (författare)
  • Ab initio thermodynamics of zirconium hydrides and deuterides
  • 2014
  • Ingår i: Computational materials science. - : Elsevier. - 0927-0256 .- 1879-0801. ; 86, s. 211-222
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the results of a systematic ab initio study of the elastic and thermodynamic properties of γ-ZrH, δ-View the MathML source-ZrD, and δ-ZrD1.5. In addition, pure α-Zr as well as the ε-ZrH2 and ε-ZrD2 phases are evaluated for reference. The calculations are performed using quantum mechanical density functional theory (DFT) with the frozen core projector augmented wave (PAW) approach and a generalised gradient approximated (GGA) exchange–correlation functional. To capture the variations of the thermodynamic quantities over a wide range of temperatures View the MathML source, the quasi-harmonic approximation approach is adopted where the influence of the vibrational and electronic free energies are included by means of the phonon and electron densities of state. This allows for quantifying the contributions of the electron density of states, which were not accounted for in the previous studies. All the pertinent elastic constants and phonon properties for the considered hydride/deuteride phases are calculated and compared with experimental data; which were not done before. We have further computed the entropy, heat capacity and enthalpy as well as low temperature thermodynamic properties such as the Debye temperature and the electronic heat capacity constant for all the hydride and deuteride phases. The results of our computations concur well with the corresponding data obtained by measurements that are reported in the literature and offer the necessary data and basis for multiscale modelling of zirconium alloys.
  •  
6.
  • Tomic, Hanna, et al. (författare)
  • Assessment of a tumour growth model for virtual clinical trials of breast cancer screening
  • 2021
  • Ingår i: Medical Imaging 2021 : Physics of Medical Imaging - Physics of Medical Imaging. - : SPIE. - 1605-7422. - 9781510640191 ; 11595
  • Konferensbidrag (refereegranskat)abstract
    • Image-based analysis of breast tumour growth rate may help optimize breast cancer screening and diagnosis. It may improve the identification of aggressive tumours and suggest optimal screening intervals. Virtual clinical trial (VCT) is a simulation-based method used to evaluate and optimize medical imaging systems and design clinical trials. Our work is motivated by desire to simulate multiple screening rounds with growing tumours. We have developed a model to simulate tumours with various growth rates; this study aims at evaluating the model. We used clinical data on tumour volume doubling times (TVDT) from our previous study, to fit a probability distribution ("clinical fit"). Growing tumours were inserted into 30 virtual breasts ("simulated cohort"). Based on the clinical fit we simulated two successive screening rounds for each virtual breast. TVDT from clinical and simulated images were compared. Tumour size was measured from simulated mammograms by a radiologist in three repeated sessions, to estimate TVDT ("estimated TVDT"). Reproducibility of measured sizes decreased slightly for small tumours. The mean TVDT from the clinical fit was 297±169 days, whereas the simulated cohort had 322±217 days, and the average estimated TVDT 340 ± 287 days. The median difference between the simulated and estimated TVDT was 12 days (4% of the mean clinical TVDT). Comparisons between other data sets suggest no significant difference (p>0.5). The proposed tumour growth model suggested close agreement with clinical results, supporting potential use in VCTs of temporal breast imaging.
  •  
7.
  • Tomic, Hanna, et al. (författare)
  • Development and evaluation of a method for tumor growth simulation in virtual clinical trials of breast cancer screening
  • 2022
  • Ingår i: Journal of Medical Imaging. - 2329-4302. ; 9:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: Image-based analysis of breast tumor growth rate may optimize breast cancer screening and diagnosis by suggesting optimal screening intervals and guide the clinical discussion regarding personalized screening based on tumor aggressiveness. Simulation-based virtual clinical trials (VCTs) can be used to evaluate and optimize medical imaging systems and design clinical trials. This study aimed to simulate tumor growth over multiple screening rounds. Approach: This study evaluates a preliminary method for simulating tumor growth. Clinical data on tumor volume doubling time (TVDT) was used to fit a probability distribution ("clinical fit") of TVDTs. Simulated tumors with TVDTs sampled from the clinical fit were inserted into 30 virtual breasts ("simulated cohort") and used to simulate mammograms. Based on the TVDT, two successive screening rounds were simulated for each virtual breast. TVDTs from clinical and simulated mammograms were compared. Tumor sizes in the simulated mammograms were measured by a radiologist in three repeated sessions to estimate TVDT. Results: The mean TVDT was 297 days (standard deviation, SD, 169 days) in the clinical fit and 322 days (SD, 217 days) in the simulated cohort. The mean estimated TVDT was 340 days (SD, 287 days). No significant difference was found between the estimated TVDTs from simulated mammograms and clinical TVDT values (p > 0.5). No significant difference (p > 0.05) was observed in the reproducibility of the tumor size measurements between the two screening rounds. Conclusions: The proposed method for tumor growth simulation has demonstrated close agreement with clinical results, supporting potential use in VCTs of temporal breast imaging.
  •  
8.
  • Tomic, Hanna, et al. (författare)
  • Simulation of breast lesions based upon fractal Perlin noise
  • 2023
  • Ingår i: Physica Medica. - 1120-1797. ; 114
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: Steadily increasing use of computational/virtual phantoms in medical physics has motivated expanding development of new simulation methods and data representations for modelling human anatomy. This has emphasized the need for increased realism, user control, and availability. In breast cancer research, virtual phantoms have gained an important role in evaluating and optimizing imaging systems. For this paper, we have developed an algorithm to model breast abnormalities based on fractal Perlin noise. We demonstrate and characterize the extension of this approach to simulate breast lesions of various sizes, shapes, and complexity. Materials and method: Recently, we developed an algorithm for simulating the 3D arrangement of breast anatomy based on Perlin noise. In this paper, we have expanded the method to also model soft tissue breast lesions. We simulated lesions within the size range of clinically representative breast lesions (masses, 5–20 mm in size). Simulated lesions were blended into simulated breast tissue backgrounds and visualized as virtual digital mammography images. The lesions were evaluated by observers following the BI-RADS assessment criteria. Results: Observers categorized the lesions as round, oval or irregular, with circumscribed, microlobulated, indistinct or obscured margins. The majority of the simulated lesions were considered by the observers to have a realism score of moderate to well. The simulation method provides almost real-time lesion generation (average time and standard deviation: 1.4 ± 1.0 s). Conclusion: We presented a novel algorithm for computer simulation of breast lesions using Perlin noise. The algorithm enables efficient simulation of lesions, with different sizes and appearances.
  •  
9.
  • Tomic, Hanna, et al. (författare)
  • Tumor growth rate estimations in a breast cancer screening population
  • 2022
  • Ingår i: 16th International Workshop on Breast Imaging, IWBI 2022. - : SPIE. - 0277-786X .- 1996-756X. - 9781510655843 ; 12286
  • Konferensbidrag (refereegranskat)abstract
    • Tumor growth rate estimations can provide useful information about tumor progression and aggressiveness. Understanding the breast cancer progression and aggressiveness could aid with personalized screening/follow-up, treatment options, and prognosis. This paper reports a preliminary estimation of the tumor volume doubling time (TVDT) for cancers detected during the Malmö Breast Tomosynthesis Screening Trial (MBTST). The trial included 14 848 women in whom 139 cancers were detected. Out of those, 101 spiculated or circumscribed masses, had prior images available, making them suitable for tumor growth evaluation. In the preliminary analysis of images from 30 women, tumor size was measured in mammograms from MBTST and prior images. The analyzed cases were selected among women with visible tumors in two consecutive screening exams. The tumor size was measured in two orthogonal directions. The average of the two measurements was used in the analysis. The mean time and the corresponding standard deviation (SD) between the two consecutive mammograms were 744 ± 73 days. The mean TVDT and SD were 637 ± 428 days (range 159-2373 days). Future work will include the analysis of a larger number of women and a stratification of TVDT related to screening intervals.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy