SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bjerkeli V.) "

Sökning: WFRF:(Bjerkeli V.)

  • Resultat 1-10 av 17
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ratajczak-Tretel, B., et al. (författare)
  • Atrial fibrillation in cryptogenic stroke and TIA patients in the nordic atrial fibrillation and stroke The Nordic Atrial Fibrillation and Stroke (NOR-FIB) Study : Main results
  • 2023
  • Ingår i: European Stroke Journal. - : SAGE Publications. - 2396-9873 .- 2396-9881. ; 8:1, s. 148-156
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: Secondary stroke prevention depends on proper identification of the underlying etiology and initiation of optimal treatment after the index event. The aim of the NOR-FIB study was to detect and quantify underlying atrial fibrillation (AF) in patients with cryptogenic stroke (CS) or transient ischaemic attack (TIA) using insertable cardiac monitor (ICM), to optimise secondary prevention, and to test the feasibility of ICM usage for stroke physicians. Patients and methods: Prospective observational international multicenter real-life study of CS and TIA patients monitored for 12 months with ICM (Reveal LINQ) for AF detection. Results: ICM insertion was performed in 91.5% by stroke physicians, within median 9 days after index event. Paroxysmal AF was diagnosed in 74 out of 259 patients (28.6%), detected early after ICM insertion (mean 48 ± 52 days) in 86.5% of patients. AF patients were older (72.6 vs 62.2; p < 0.001), had higher pre-stroke CHA₂DS₂-VASc score (median 3 vs 2; p < 0.001) and admission NIHSS (median 2 vs 1; p = 0.001); and more often hypertension (p = 0.045) and dyslipidaemia (p = 0.005) than non-AF patients. The arrhythmia was recurrent in 91.9% and asymptomatic in 93.2%. At 12-month follow-up anticoagulants usage was 97.3%. Discussion and conclusions: ICM was an effective tool for diagnosing underlying AF, capturing AF in 29% of the CS and TIA patients. AF was asymptomatic in most cases and would mainly have gone undiagnosed without ICM. The insertion and use of ICM was feasible for stroke physicians in stroke units.
  •  
2.
  • Ratajczak-Tretel, B, et al. (författare)
  • Prediction of underlying atrial fibrillation in patients with a cryptogenic stroke : results from the NOR-FIB Study
  • 2023
  • Ingår i: Journal of Neurology. - 1432-1459. ; 270:8, s. 4049-4059
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Atrial fibrillation (AF) detection and treatment are key elements to reduce recurrence risk in cryptogenic stroke (CS) with underlying arrhythmia. The purpose of the present study was to assess the predictors of AF in CS and the utility of existing AF-predicting scores in The Nordic Atrial Fibrillation and Stroke (NOR-FIB) Study.METHOD: The NOR-FIB study was an international prospective observational multicenter study designed to detect and quantify AF in CS and cryptogenic transient ischaemic attack (TIA) patients monitored by the insertable cardiac monitor (ICM), and to identify AF-predicting biomarkers. The utility of the following AF-predicting scores was tested: AS5F, Brown ESUS-AF, CHA 2DS 2-VASc, CHASE-LESS, HATCH, HAVOC, STAF and SURF. RESULTS: In univariate analyses increasing age, hypertension, left ventricle hypertrophy, dyslipidaemia, antiarrhythmic drugs usage, valvular heart disease, and neuroimaging findings of stroke due to intracranial vessel occlusions and previous ischemic lesions were associated with a higher likelihood of detected AF. In multivariate analysis, age was the only independent predictor of AF. All the AF-predicting scores showed significantly higher score levels for AF than non-AF patients. The STAF and the SURF scores provided the highest sensitivity and negative predictive values, while the AS5F and SURF reached an area under the receiver operating curve (AUC) > 0.7.CONCLUSION: Clinical risk scores may guide a personalized evaluation approach in CS patients. Increasing awareness of the usage of available AF-predicting scores may optimize the arrhythmia detection pathway in stroke units.
  •  
3.
  • Ratajczak-Tretel, B, et al. (författare)
  • Underlying causes of cryptogenic stroke and TIA in the nordic atrial fibrillation and stroke (NOR-FIB) study : the importance of comprehensive clinical evaluation
  • 2023
  • Ingår i: BMC Neurology. - : Springer Science and Business Media LLC. - 1471-2377. ; 23:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Cryptogenic stroke is a heterogeneous condition, with a wide spectrum of possible underlying causes for which the optimal secondary prevention may differ substantially. Attempting a correct etiological diagnosis to reduce the stroke recurrence should be the fundamental goal of modern stroke management.METHODS: Prospective observational international multicenter study of cryptogenic stroke and cryptogenic transient ischemic attack (TIA) patients clinically monitored for 12 months to assign the underlying etiology. For atrial fibrillation (AF) detection continuous cardiac rhythm monitoring with insertable cardiac monitor (Reveal LINQ, Medtronic) was performed. The 12-month follow-up data for 250 of 259 initially included NOR-FIB patients were available for analysis.RESULTS: After 12 months follow-up probable stroke causes were revealed in 43% patients, while 57% still remained cryptogenic. AF and atrial flutter was most prevalent (29%). In 14% patients other possible causes were revealed (small vessel disease, large-artery atherosclerosis, hypercoagulable states, other cardioembolism). Patients remaining cryptogenic were younger (p < 0.001), had lower CHA 2DS 2-VASc score (p < 0.001) on admission, and lower NIHSS score (p = 0.031) and mRS (p = 0.016) at discharge. Smoking was more prevalent in patients that were still cryptogenic (p = 0.014), while dyslipidaemia was less prevalent (p = 0.044). Stroke recurrence rate was higher in the cryptogenic group compared to the group where the etiology was revealed, 7.7% vs. 2.8%, (p = 0.091). CONCLUSION: Cryptogenic stroke often indicates the inability to identify the cause in the acute phase and should be considered as a working diagnosis until efforts of diagnostic work up succeed in identifying a specific underlying etiology. Timeframe of 6-12-month follow-up may be considered as optimal.TRIAL REGISTRATION: ClinicalTrials.gov Identifier NCT02937077, EudraCT 2018-002298-23.
  •  
4.
  • van Dishoeck, E. F., et al. (författare)
  • Water in star-forming regions: Physics and chemistry from clouds to disks as probed by Herschel spectroscopy
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 648
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Water is a key molecule in the physics and chemistry of star and planet formation, but it is difficult to observe from Earth. The Herschel Space Observatory provided unprecedented sensitivity as well as spatial and spectral resolution to study water. The Water In Star-forming regions with Herschel (WISH) key program was designed to observe water in a wide range of environments and provide a legacy data set to address its physics and chemistry. Aims. The aim of WISH is to determine which physical components are traced by the gas-phase water lines observed with Herschel and to quantify the excitation conditions and water abundances in each of these components. This then provides insight into how and where the bulk of the water is formed in space and how it is transported from clouds to disks, and ultimately comets and planets. Methods. Data and results from WISH are summarized together with those from related open time programs. WISH targeted ∼80 sources along the two axes of luminosity and evolutionary stage: from low- to high-mass protostars (luminosities from <1 to > 10Lpdbl) and from pre-stellar cores to protoplanetary disks. Lines of H2O and its isotopologs, HDO, OH, CO, and [O I], were observed with the HIFI and PACS instruments, complemented by other chemically-related molecules that are probes of ultraviolet, X-ray, or grain chemistry. The analysis consists of coupling the physical structure of the sources with simple chemical networks and using non-LTE radiative transfer calculations to directly compare models and observations. Results. Most of the far-infrared water emission observed with Herschel in star-forming regions originates from warm outflowing and shocked gas at a high density and temperature (> 10cm-3, 300-1000 K, v ∼ 25 km s-1), heated by kinetic energy dissipation. This gas is not probed by single-dish low-J CO lines, but only by CO lines with Jup > 14. The emission is compact, with at least two different types of velocity components seen. Water is a significant, but not dominant, coolant of warm gas in the earliest protostellar stages. The warm gas water abundance is universally low: orders of magnitude below the H2O/H2 abundance of 4 × 10-4 expected if all volatile oxygen is locked in water. In cold pre-stellar cores and outer protostellar envelopes, the water abundance structure is uniquely probed on scales much smaller than the beam through velocity-resolved line profiles. The inferred gaseous water abundance decreases with depth into the cloud with an enhanced layer at the edge due to photodesorption of water ice. All of these conclusions hold irrespective of protostellar luminosity. For low-mass protostars, a constant gaseous HDO/H2O ratio of ∼0.025 with position into the cold envelope is found. This value is representative of the outermost photodesorbed ice layers and cold gas-phase chemistry, and much higher than that of bulk ice. In contrast, the gas-phase NH3 abundance stays constant as a function of position in low-mass pre- and protostellar cores. Water abundances in the inner hot cores are high, but with variations from 5 × 10-6 to a few × 10-4 for low- and high-mass sources. Water vapor emission from both young and mature disks is weak. Conclusions. The main chemical pathways of water at each of the star-formation stages have been identified and quantified. Low warm water abundances can be explained with shock models that include UV radiation to dissociate water and modify the shock structure. UV fields up to 102-10times the general interstellar radiation field are inferred in the outflow cavity walls on scales of the Herschel beam from various hydrides. Both high temperature chemistry and ice sputtering contribute to the gaseous water abundance at low velocities, with only gas-phase (re-)formation producing water at high velocities. Combined analyses of water gas and ice show that up to 50% of the oxygen budget may be missing. In cold clouds, an elegant solution is that this apparently missing oxygen is locked up in larger μm-sized grains that do not contribute to infrared ice absorption. The fact that even warm outflows and hot cores do not show H2O at full oxygen abundance points to an unidentified refractory component, which is also found in diffuse clouds. The weak water vapor emission from disks indicates that water ice is locked up in larger pebbles early on in the embedded Class I stage and that these pebbles have settled and drifted inward by the Class II stage. Water is transported from clouds to disks mostly as ice, with no evidence for strong accretion shocks. Even at abundances that are somewhat lower than expected, many oceans of water are likely present in planet-forming regions. Based on the lessons for galactic protostars, the low-J H2O line emission (Eup < 300 K) observed in extragalactic sources is inferred to be predominantly collisionally excited and to originate mostly from compact regions of current star formation activity. Recommendations for future mid- to far-infrared missions are made.
  •  
5.
  • Benz, A. O., et al. (författare)
  • Hydrides in young stellar objects : Radiation tracers in a protostar-disk-outflow system
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521, s. L35-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Hydrides of the most abundant heavier elements are fundamental molecules in cosmic chemistry. Some of them trace gas irradiated by UV or X-rays. Aims: We explore the abundances of major hydrides in W3 IRS5, a prototypical region of high-mass star formation. Methods: W3 IRS5 was observed by HIFI on the Herschel Space Observatory with deep integration (≃2500 s) in 8 spectral regions. Results: The target lines including CH, NH, H3O+, and the new molecules SH+, H2O+, and OH+ are detected. The H2O+ and OH+ J = 1-0 lines are found mostly in absorption, but also appear to exhibit weak emission (P-Cyg-like). Emission requires high density, thus originates most likely near the protostar. This is corroborated by the absence of line shifts relative to the young stellar object (YSO). In addition, H2O+ and OH+ also contain strong absorption components at a velocity shifted relative to W3 IRS5, which are attributed to foreground clouds. Conclusions: The molecular column densities derived from observations correlate well with the predictions of a model that assumes the main emission region is in outflow walls, heated and irradiated by protostellar UV radiation. Herschel is an ESA space observatory with science instruments provided by a European-led Principal Investigator consortia and with important participation from NASA.Appendix (page 5) is only available in electronic form at http://www.aanda.org
  •  
6.
  • Bjerkeli, Per, 1977, et al. (författare)
  • Kinematics around the B335 protostar down to au scales
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 631
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The relationship between outflow launching and formation of accretion disks around young stellar objects is still not entirely understood, which is why spectrally and spatially resolved observations are needed. Recently, the Atacama Large Millimetre/sub-millimetre Array (ALMA) has carried out long-baseline observations towards a handful of sources, revealing connections between outflows and the inner regions of disks. Aims. Here we aim to determine the small-scale kinematic and morphological properties of the outflow from the isolated protostar B335 for which no Keplerian disk has, so far, been observed on scales down to 10 au. Methods. We use ALMA in its longest-baseline configuration to observe emission from CO isotopologs, SiO, SO$_2$ and CH$_3$OH. The proximity of B335 provides a resolution of ~3 au (0.03''). We also combine our long-baseline data with archival data to produce a high-fidelity image covering scales up to 700 au (7''). Results. $^{12}$CO has a X-shaped morphology with arms ~50 au in width that we associate with the walls of an outflow cavity, similar to what is observed on larger scales. Long-baseline continuum emission is confined to <7 au of the protostar, while short-baseline continuum emission follows the $^{12}$CO outflow and cavity walls. Methanol is detected within ~30 au of the protostar. SiO is also detected in the vicinity of the protostar, but extended along the outflow. Conclusions. The $^{12}$CO outflow shows no clear signs of rotation at distances $\gtrsim$30 au from the protostar. SiO traces the protostellar jet on small scales, but without obvious rotation. CH$_3$OH and SO$_2$ trace a region <16 au in diameter, centred on the continuum peak, which is clearly rotating. Using episodic, high-velocity, $^{12}$CO features, we estimate the launching radius of the outflow to be <0.1 au and dynamical timescales on the order of a few years.
  •  
7.
  • Coutens, A., et al. (författare)
  • The ALMA-PILS survey: First detections of deuterated formamide and deuterated isocyanic acid in the interstellar medium
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 590
  • Tidskriftsartikel (refereegranskat)abstract
    • Formamide (NH2CHO) has previously been detected in several star-forming regions and is thought to be a precursor for different prebiotic molecules. Its formation mechanism is still debated, however. Observations of formamide, related species, and their isopotologues may provide useful clues to the chemical pathways leading to their formation. The Protostellar Interferometric Line Survey (PILS) represents an unbiased, high angular resolution and sensitivity spectral survey of the low-mass protostellar binary IRAS 16293-2422 with the Atacama Large Millimeter/submillimeter Array (ALMA). For the first time, we detect the three singly deuterated forms of NH2CHO (NH2CDO, cis-and trans-NHDCHO), as well as DNCO towards the component B of this binary source. The images reveal that the different isotopologues are all present in the same region. Based on observations of the 13C isotopologues of formamide and a standard 12C/13C ratio, the deuterium fractionation is found to be similar for the three different forms with a value of about 2%. The DNCO/HNCO ratio is also comparable to the D/H ratio of formamide (~1%). These results are in agreement with the hypothesis that NH2CHO and HNCO are chemically related through grain-surface formation.
  •  
8.
  • Drozdovskaya, M. N., et al. (författare)
  • The ALMA-PILS survey: The sulphur connection between protostars and comets: IRAS 16293-2422 B and 67P/Churyumov-Gerasimenko
  • 2018
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 476:4, s. 4949-4964
  • Tidskriftsartikel (refereegranskat)abstract
    • The evolutionary past of our Solar system can be pieced together by comparing analogous lowmass protostars with remnants of our Protosolar Nebula - comets. Sulphur-bearing molecules may be unique tracers of the joint evolution of the volatile and refractory components. ALMA Band 7 data from the large unbiased Protostellar Interferometric Line Survey are used to search for S-bearing molecules in the outer disc-like structure, ~60 au from IRAS 16293-2422 B, and are compared with data on 67P/Churyumov-Gerasimenko (67P/C-G) stemming from the ROSINA (Rosetta Orbiter Spectrometer for Ion and Neutral Analysis) instrument aboard Rosetta. Species such as SO 2 , SO, OCS, CS, H 2 CS, H 2 S, and CH 3 SH are detected via at least one of their isotopologues towards IRAS 16293-2422 B. The search reveals a first-time detection of OC 33 S towards this source and a tentative first-time detection of C 36 S towards a low-mass protostar. The data show that IRAS 16293-2422 B contains much more OCS than H 2 S in comparison to 67P/C-G; meanwhile, the SO/SO 2 ratio is in close agreement between the two targets. IRAS 16293-2422 B has a CH 3 SH/H 2 CS ratio in range of that of our Solar system (differences by a factor of 0.7-5.3). It is suggested that the levels of UV radiation during the initial collapse of the systems may have varied and have potentially been higher for IRAS 16293-2422 B due to its binary nature; thereby, converting more H 2 S into OCS. It remains to be conclusively tested if this also promotes the formation of S-bearing complex organics. Elevated UV levels of IRAS 16293-2422 B and a warmer birth cloud of our Solar system may jointly explain the variations between the two low-mass systems.
  •  
9.
  • Fayolle, E. C., et al. (författare)
  • Protostellar and cometary detections of organohalogens
  • 2017
  • Ingår i: Nature Astronomy. - : Springer Science and Business Media LLC. - 2397-3366. ; 1:10, s. 703-708
  • Tidskriftsartikel (refereegranskat)abstract
    • Organohalogens, a class of molecules that contain at least one halogen atom bonded to carbon, are abundant on the Earth where they are mainly produced through industrial and biological processes(1). Consequently, they have been proposed as biomarkers in the search for life on exoplanets(2). Simple halogen hydrides have been detected in interstellar sources and in comets, but the presence and possible incorporation of more complex halogen-containing molecules such as organohalogens into planet-forming regions is uncertain(3,4). Here we report the interstellar detection of two isotopologues of the organohalogen CH3Cl and put some constraints on CH3F in the gas surrounding the low-mass protostar IRAS 16293-2422, using the Atacama Large Millimeter/submillimeter Array (ALMA). We also find CH3Cl in the coma of comet 67P/Churyumov-Gerasimenko (67P/C-G) by using the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) instrument. The detections reveal an efficient pre-planetary formation pathway of organohalogens. Cometary impacts may deliver these species to young planets and should thus be included as a potential abiotical production source when interpreting future organohalogen detections in atmospheres of rocky planets.
  •  
10.
  • Fich, M., et al. (författare)
  • Herschel-PACS spectroscopy of the intermediate mass protostar NGC 7129 FIRS 2
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 518:Article Number: L86
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. We present preliminary results of the first Herschel spectroscopic observations of NGC 7129 FIRS2, an intermediate mass star-forming region. We attempt to interpret the observations in the framework of an in-falling spherical envelope. Methods. The PACS instrument was used in line spectroscopy mode ( R = 1000-5000) with 15 spectral bands between 63 and 185 mu m. This provided good detections of 26 spectral lines seen in emission, including lines of H2O, CO, OH, O I, and C II. Results. Most of the detected lines, particularly those of H2O and CO, are substantially stronger than predicted by the spherical envelope models, typically by several orders of magnitude. In this paper we focus on what can be learned from the detected CO emission lines. Conclusions. It is unlikely that the much stronger than expected line emission arises in the (spherical) envelope of the YSO. The region hot enough to produce such high excitation lines within such an envelope is too small to produce the amount of emission observed. Virtually all of this high excitation emission must arise in structures such as as along the walls of the outflow cavity with the emission produced by a combination of UV photon heating and/or non-dissociative shocks.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 17

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy