SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Bjornberg J) "

Search: WFRF:(Bjornberg J)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Ekelund, Ulf, et al. (author)
  • Myogenic vascular regulation in skeletal muscle in vivo is not dependent of endothelium-derived nitric oxide
  • 1992
  • In: Acta Physiologica Scandinavica. - 0001-6772. ; 144:2, s. 199-207
  • Journal article (peer-reviewed)abstract
    • The hypothesis, based on in vitro experiments on large conduit arteries, that endothelium-derived nitric oxide is a mediator of vascular myogenic reactivity was tested in cat gastrocnemius muscle in vivo. This was done by comparing, in the absence and presence of effective endothelium-derived nitric oxide blockade by the specific inhibitors NG-monomethyl-L-arginine or NG-nitro-L-arginine methyl ester, myogenic responses in defined consecutive vascular sections to dynamic vascular transmural pressure stimuli, to arterial occlusion (reactive hyperaemia), and to arterial pressure changes (autoregulation of blood flow and capillary pressure). The results demonstrated that the myogenic vascular reactivity to quick ramp transmural pressure stimuli was not attenuated by endothelium-derived nitric oxide blockade, but rather reinforced. The amplitude of the reactive hyperaemia response was unaffected by endothelium-derived nitric oxide blockade, but its duration was shortened because of faster myogenic constriction, especially of large-bore arterial resistance vessels greater than 25 microns, in the recovery phase. Both the improved myogenic responsiveness to transmural pressure stimuli and the shortening of the reactive hyperaemia by endothelium-derived nitric oxide blockade suggested that endothelium-derived nitric oxide released in vivo acts as a 'metabolic' factor which certainly does not improve, but rather depresses myogenic vascular reactivity. Autoregulation of blood flow and capillary pressure were well preserved in the presence of endothelium-derived nitric oxide blockade. It was concluded from the results of these multifaceted tests that myogenic vascular regulation in skeletal muscle in vivo seems independent of endothelium-derived nitric oxide.(ABSTRACT TRUNCATED AT 250 WORDS)
  •  
3.
  • Maspers, M, et al. (author)
  • Protective role of sympathetic nerve activity to exercising skeletal muscle in the regulation of capillary pressure and fluid filtration
  • 1991
  • In: Acta Physiologica Scandinavica. - 0001-6772. ; 141:3, s. 351-361
  • Journal article (peer-reviewed)abstract
    • This study describes the integrated sympathetic/metabolic control of capillary pressure (Pc) and filtration in cat skeletal muscle as studied during graded exercise and superimposed graded (2, 6 and 16 Hz) vasoconstrictor nerve excitation. The applied technique permitted simultaneous analysis of the underlying changes of resistance in the whole vascular bed (RT) and in its large-bore arterial resistance vessels (greater than 25 microns), small arterioles (less than 25 microns) and veins. Graded exercise per se caused graded increases in capillary pressure, which at heavy work exceeded the resting control value by 12.2 mmHg, in turn leading to marked loss of plasma fluid by filtration. Sympathetic nerve stimulation was much more efficient in lowering capillary pressure during exercise than at rest, in spite of an exercise-induced marked attenuation of the vasoconstrictor response (RT). The sympathetically evoked capillary pressure fall per unit resistance increase was larger the greater the degree of exercise vasodilation, implying a highly nonlinear relation between capillary pressure and RT and also between the more direct determinant of capillary pressure the post- to precapillary resistance ratio, and RT. Strenuous exercise in vivo is known to be associated with a markedly increased reflex sympathetic discharge to exercising muscle which has been a puzzling feature in view of its untoward restriction of the exercise hyperaemia response. To the extent the present results are representative for this in vivo situation, they suggest that sympathetic discharge to exercising muscle, in spite of some flow restricting effect, might serve a highly beneficial function, causing effective protection against excessive work-induced rise of capillary pressure and harmful plasma fluid loss into the extravascular space of working muscle.
  •  
4.
  • Mellander, Stefan, et al. (author)
  • Cardiovascular regulation by endogenous nitric oxide is essential for survival after acute haemorrhage
  • 1997
  • In: Acta Physiologica Scandinavica. - 0001-6772. ; 160:1, s. 57-65
  • Journal article (peer-reviewed)abstract
    • Our previous studies have indicated that endogenous nitric oxide serves as a physiologically important inhibitor of vascular tone during acute haemorrhage. This vasodilator action attenuates the concomitant reflex adrenergic constriction and thereby prevents critical reduction of tissue blood flow. The present study aimed to evaluate the overall importance of this nitric oxide regulation for survival after acute haemorrhage. This was done by comparative observations of survival time and circulatory, metabolic and histopathological changes after an acute standardized lethal blood loss (45%) in cats exposed to nitric oxide synthase (NOS) inhibition and in matched control animals with intact nitric oxide regulation. NOS inhibition was instituted by intravenously administered N omega-nitro-L-arginine methyl ester. The survival time averaged 2 h 49 min in the NOS-blocked animals and 10 h 14 min in the control animals (P < 0.001). NOS inhibition thus reduced the posthaemorrhagic survival time to < 30% of that in the control cats. Haemorrhage in the NOS-blocked animals led to rapidly developing arterial hypotension, increased anaerobic metabolism, metabolic lactacidosis, hyperkalaemia, and morphological tissue damage especially in heart and liver, in spite of maintained arterial normoxia, which signifies tissue hypoxia caused by seriously impaired nutritional blood supply. At the time of death of the NOS-blocked cats, the control animals still exhibited a virtually normal circulatory/metabolic state. A much later, and more slowly developing circulatory/metabolic deterioration was observed in the control animals. These differences between the two groups of animals indicate that nitric oxide release, by its vasodilator action, to a significant extent helps to maintain an adequate nutritional blood supply to the tissues in acute haemorrhage.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view