SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bjornerud A) "

Sökning: WFRF:(Bjornerud A)

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  • Briley-Saebo, Karen C., et al. (författare)
  • Clearance of iron oxide particles in rat liver : effect of hydrated particle size and coating material on liver metabolism
  • 2006
  • Ingår i: Investigative Radiology. - : Ovid Technologies (Wolters Kluwer Health). - 0020-9996 .- 1536-0210. ; 41:7, s. 560-571
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVES: We sought to evaluate the effect of the particle size and coating material of various iron oxide preparations on the rate of rat liver clearance. MATERIALS AND METHODS: The following iron oxide formulations were used in this study: dextran-coated ferumoxide (size = 97 nm) and ferumoxtran-10 (size = 21 nm), carboxydextran-coated SHU555A (size = 69 nm) and fractionated SHU555A (size = 12 nm), and oxidized-starch coated materials either unformulated NC100150 (size = 15 nm) or formulated NC100150 injection (size = 12 nm). All formulations were administered to 165 rats at 2 dose levels. Quantitative liver R2* values were obtained during a 63-day time period. The concentration of iron oxide particles in the liver was determined by relaxometry, and these values were used to calculate the particle half-lives in the liver. RESULTS: After the administration of a high dose of iron oxide, the half-life of iron oxide particles in rat liver was 8 days for dextran-coated materials, 10 days for carboxydextran materials, 14 days for unformulated oxidized-starch, and 29 days for formulated oxidized-starch. CONCLUSIONS: The results of the study indicate that materials with similar coating but different sizes exhibited similar rates of liver clearance. It was, therefore, concluded that the coating material significantly influences the rate of iron oxide clearance in rat liver.
  •  
8.
  •  
9.
  •  
10.
  • Nygaard, GO, et al. (författare)
  • Cortical thickness and surface area relate to specific symptoms in early relapsing-remitting multiple sclerosis
  • 2015
  • Ingår i: Multiple sclerosis (Houndmills, Basingstoke, England). - : SAGE Publications. - 1477-0970 .- 1352-4585. ; 21:4, s. 402-414
  • Tidskriftsartikel (refereegranskat)abstract
    • Cortical atrophy is common in early relapsing–remitting multiple sclerosis (RRMS). Whether this atrophy is caused by changes in cortical thickness or cortical surface area is not known, nor is their separate contributions to clinical symptoms. Objectives: To investigate the difference in cortical surface area, thickness and volume between early RRMS patients and healthy controls; and the relationship between these measures and neurological disability, cognitive decline, fatigue and depression. Methods: RRMS patients ( n = 61) underwent magnetic resonance imaging (MRI), neurological and neuropsychological examinations. We estimated cortical surface area, thickness and volume and compared them with matched healthy controls ( n = 61). We estimated the correlations between clinical symptoms and cortical measures within the patient group. Results: We found no differences in cortical surface area, but widespread differences in cortical thickness and volume between the groups. Neurological disability was related to regionally smaller cortical thickness and volume. Better verbal memory was related to regionally larger surface area; and better visuo-spatial memory, to regionally larger cortical volume. Higher depression scores and fatigue were associated with regionally smaller cortical surface area and volume. Conclusions: We found that cortical thickness, but not cortical surface area, is affected in early RRMS. We identified specific structural correlates to the main clinical symptoms in early RRMS.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy