SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Blaak E. E.) "

Sökning: WFRF:(Blaak E. E.)

  • Resultat 1-10 av 53
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Zhang, X., et al. (författare)
  • Human total, basal and activity energy expenditures are independent of ambient environmental temperature
  • 2022
  • Ingår i: iScience. - : Elsevier Inc.. - 2589-0042. ; 25:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Lower ambient temperature (Ta) requires greater energy expenditure to sustain body temperature. However, effects of Ta on human energetics may be buffered by environmental modification and behavioral compensation. We used the IAEA DLW database for adults in the USA (n = 3213) to determine the effect of Ta (−10 to +30°C) on TEE, basal (BEE) and activity energy expenditure (AEE) and physical activity level (PAL). There were no significant relationships (p > 0.05) between maximum, minimum and average Ta and TEE, BEE, AEE and PAL. After adjustment for fat-free mass, fat mass and age, statistically significant (p < 0.01) relationships between TEE, BEE and Ta emerged in females but the effect sizes were not biologically meaningful. Temperatures inside buildings are regulated at 18–25°C independent of latitude. Hence, adults in the US modify their environments to keep TEE constant across a wide range of external ambient temperatures.
  •  
2.
  • Kootte, R. S., et al. (författare)
  • Improvement of Insulin Sensitivity after Lean Donor Feces in Metabolic Syndrome Is Driven by Baseline Intestinal Microbiota Composition
  • 2017
  • Ingår i: Cell Metabolism. - : Elsevier BV. - 1550-4131. ; 26:4, s. 611-619
  • Tidskriftsartikel (refereegranskat)abstract
    • The intestinal microbiota has been implicated in insulin resistance, although evidence regarding causality in humans is scarce. We therefore studied the effect of lean donor (allogenic) versus own (autologous) fecal microbiota transplantation (FMT) to male recipients with the metabolic syndrome. Whereas we did not observe metabolic changes at 18 weeks after FMT, insulin sensitivity at 6 weeks after allogenic FMT was significantly improved, accompanied by altered microbiota composition. We also observed changes in plasma metabolites such as gamma-aminobutyric acid and show that metabolic response upon allogenic FMT (defined as improved insulin sensitivity 6 weeks after FMT) is dependent on decreased fecal microbial diversity at baseline. In conclusion, the beneficial effects of lean donor FMT on glucose metabolism are associated with changes in intestinal microbiota and plasma metabolites and can be predicted based on baseline fecal microbiota composition.
  •  
3.
  • Boon, Hanneke, 1981-, et al. (författare)
  • Intravenous AICAR administration reduces hepatic glucose output and inhibits whole body lipolysis in type 2 diabetic patients
  • 2008
  • Ingår i: Diabetologia. - Heidelberg : Springer Berlin/Heidelberg. - 0012-186X .- 1432-0428. ; 51:10, s. 1893-1900
  • Tidskriftsartikel (refereegranskat)abstract
    • AIMS/HYPOTHESIS: The 5'-AMP-activated protein kinase (AMPK) pathway is intact in type 2 diabetic patients and is seen as a target for diabetes treatment. In this study, we aimed to assess the impact of the AMPK activator 5-aminoimidazole-4-carboxamide riboside (AICAR) on both glucose and fatty acid metabolism in vivo in type 2 diabetic patients. METHODS: Stable isotope methodology and blood and muscle biopsy sampling were applied to assess blood glucose and fatty acid kinetics following continuous i.v. infusion of AICAR (0.75 mg kg(-1) min(-1)) and/or NaCl (0.9%) in ten male type 2 diabetic patients (age 64 +/- 2 years; BMI 28 +/- 1 kg/m(2)). RESULTS: Plasma glucose rate of appearance (R (a)) was reduced following AICAR administration, while plasma glucose rate of disappearance (R (d)) was similar in the AICAR and control test. Consequently, blood glucose disposal (R (d) expressed as a percentage of R (a)) was increased following AICAR infusion (p < 0.001). Accordingly, a greater decline in plasma glucose concentration was observed following AICAR infusion (p < 0.001). Plasma NEFA R (a) and R (d) were both significantly reduced in response to AICAR infusion, and were accompanied by a significant decline in plasma NEFA concentration. Although AMPK phosphorylation in skeletal muscle was not increased, we observed a significant increase in acetyl-CoA carboxylase phosphorylation (p < 0.001). CONCLUSIONS/INTERPRETATION: The i.v. administration of AICAR reduces hepatic glucose output, thereby lowering blood glucose concentrations in vivo in type 2 diabetic patients. Furthermore, AICAR administration stimulates hepatic fatty acid oxidation and/or inhibits whole body lipolysis, thereby reducing plasma NEFA concentration. © 2008 The Author(s).
  •  
4.
  • Gjelstad, I. M. F., et al. (författare)
  • Expression of perilipins in human skeletal muscle in vitro and in vivo in relation to diet, exercise and energy balance
  • 2012
  • Ingår i: Archives of Physiology and Biochemistry. - : Informa UK Limited. - 1381-3455 .- 1744-4160. ; 118:1, s. 22-30
  • Tidskriftsartikel (refereegranskat)abstract
    • The perilipin proteins enclose intracellular lipid droplets. We describe the mRNA expression of the five perilipins in human skeletal muscle in relation to fatty acid supply, exercise and energy balance. We observed that all perilipins were expressed in skeletal muscle biopsies with the highest mRNA levels of perilipin 2, 4 and 5. Cultured myotubes predominantly expressed perilipin 2 and 3. In vitro, incubation of myotubes with fatty acids enhanced mRNA expression of perilipin 1, 2 and 4. In vivo, low fat diet increased mRNA levels of perilipin 3 and 4. Endurance training, but not strength training, enhanced the expression of perilipin 2 and 3. Perilipin 1 mRNA correlated positively with body fat mass, whereas none of the perilipins were associated with insulin sensitivity. In conclusion, all perilipins mRNAs were expressed in human skeletal muscle. Diet as well as endurance exercise modulated the expression of perilipins.
  •  
5.
  •  
6.
  • Bickerton, A. S. T., et al. (författare)
  • Adipose tissue fatty acid metabolism in insulin-resistant men
  • 2008
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 1432-0428 .- 0012-186X. ; 51:8, s. 1466-1474
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims/hypothesis Increased NEFA production and concentrations may underlie insulin resistance. We examined systemic and adipose tissue NEFA metabolism in insulin-resistant overweight men (BM1 25-35 kg/m(2)). Methods In a cohort study we examined NEFA concentrations in men in the upper quartile of fasting insulin (n = 124) and in men with fasting insulin below the median (n 159). In a metabolic study we examined NEFA metabolism in the fasting and postprandial states, in ten insulin-resistant men and ten controls. Results In the cohort study, fasting NEFA concentrations were not significantly different between the two groups (median values: insulin-resistant men, 410 mu mol/l; controls, 445 2 mu mol/l). However, triacylglycerol concentrations differed markedly (1.84 vs 1.18 mmol/l respectively, p<0.001). In the metabolic study, arterial NEFA concentrations again did not differ between groups, whereas triacylglycerol concentrations were significantly higher in insulin-resistant men. Systemic NEFA production and the release of NEFA from subcutaneous adipose tissue, expressed per unit of fat mass, were both reduced in insulin-resistant men compared with controls (fasting values by 32%, p=0.02, and 44%, p=0.04 respectively). 3-Hydroxybutyrate concentrations, an index of hepatic fat oxidation and ketogenesis, were lower (p=0.03). Conclusions/interpretation Adipose tissue NEFA output is not increased (per unit weight of tissue) in insulin resistance. On the contrary, it appears to be suppressed by high fasting insulin concentrations. Alterations in triacylglycerol metabolism are more marked than those in NEFA metabolism. and are indicative of altered metabolic partitioning of fatty acids (decreased oxidation, increased esterification) in the liver.
  •  
7.
  •  
8.
  • Blaak, E E, et al. (författare)
  • Impact of postprandial glycaemia on health and prevention of disease.
  • 2012
  • Ingår i: Obesity Reviews. - 1467-7881. ; 13:10, s. 923-984
  • Tidskriftsartikel (refereegranskat)abstract
    • Postprandial glucose, together with related hyperinsulinemia and lipidaemia, has been implicated in the development of chronic metabolic diseases like obesity, type 2 diabetes mellitus (T2DM) and cardiovascular disease (CVD). In this review, available evidence is discussed on postprandial glucose in relation to body weight control, the development of oxidative stress, T2DM, and CVD and in maintaining optimal exercise and cognitive performance. There is mechanistic evidence linking postprandial glycaemia or glycaemic variability to the development of these conditions or in the impairment in cognitive and exercise perfomance. Nevertheless, postprandial glycaemia is interrelated with many other (risk) factors as well as to fasting glucose. In many studies, meal-related glycaemic response is not sufficiently characterized, or the methodology with respect to the description of food or meal composition, or the duration of the measurement of postprandial glycaemia is limited. It is evident that more randomized controlled dietary intervention trials using effective low vs. high glucose response diets are necessary in order to draw more definite conclusions on the role of postprandial glycaemia in relation to health and disease. Also of importance is the evaluation of the potential role of the time course of postprandial glycaemia.
  •  
9.
  • Boon, Hanneke, 1981-, et al. (författare)
  • Substrate source utilisation in long-term diagnosed type 2 diabetes patients at rest, and during exercise and subsequent recovery
  • 2007
  • Ingår i: Diabetologia. - Heidelberg : Springer Berlin/Heidelberg. - 0012-186X .- 1432-0428. ; 50:1, s. 103-112
  • Tidskriftsartikel (refereegranskat)abstract
    • AIMS/HYPOTHESIS: Disturbances in substrate source metabolism and, more particularly, in fatty acid metabolism, play an important role in the aetiology and progression of type 2 diabetes. However, data on substrate source utilisation in type 2 diabetes are inconclusive. METHODS: [U-(13)C]palmitate and [6,6-(2)H(2)]glucose tracers were used to assess plasma NEFA and glucose oxidation rates and to estimate the use of muscle- and/or lipoprotein-derived triacylglycerol and muscle glycogen. Subjects were ten male patients who had a long-term (7 +/- 1 years) diagnosis of type 2 diabetes and were overweight, and ten matched healthy, male control subjects. Muscle biopsy samples were collected before and after exercise to assess muscle fibre type-specific intramyocellular lipid and glycogen content. RESULTS: At rest and during exercise, the diabetes patients had greater values than the controls for palmitate rate of appearance (Ra) (rest, 2.46 +/- 0.18 and 1.85 +/- 0.20 respectively; exercise, 3.71 +/- 0.36 and 2.84 +/- 0.20 micromol kg(-1) min(-1)) and rate of disappearance (Rd) (rest, 2.45 +/- 0.18 and 1.83 +/- 0.20; exercise, 3.64 +/- 0.35 and 2.80 +/- 0.20 micromol kg(-1) min(-1) respectively). This was accompanied by significantly higher fat oxidation rates at rest and during recovery in the diabetes patients (rest, 0.11 +/- 0.01 in diabetes patients and 0.09 +/- 0.01 in controls; recovery, 0.13 +/- 0.01 and 0.11 +/- 0.01 g/min respectively), despite significantly greater plasma glucose Ra, Rd and circulating plasma glucose concentrations. Furthermore, exercise significantly lowered plasma glucose concentrations in the diabetes patients, as a result of increased blood glucose disposal. CONCLUSION: This study demonstrates that substrate source utilisation in long-term-diagnosed type 2 diabetes patients, in whom compensatory hyperinsulinaemia is no longer present, shifts towards an increase in whole-body fat oxidation rate and is accompanied by disturbances in fat and carbohydrate handling. © 2006 Springer-Verlag.
  •  
10.
  • Delgado-Lista, J., et al. (författare)
  • A gene variation (rs12691) in the CCAT/enhancer binding protein alpha modulates glucose metabolism in metabolic syndrome
  • 2013
  • Ingår i: NMCD. Nutrition Metabolism and Cardiovascular Diseases. - : Elsevier BV. - 0939-4753 .- 1590-3729. ; 23:5, s. 417-423
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and aims: CCAAT/enhancer-binding protein alpha (CEBPA) is a transcription factor involved in adipogenesis and energy homeostasis. Caloric restriction reduces CEBPA protein expression in patients with metabolic syndrome (MetS). A previous report linked rs12691 SNP in CEBPA to altered concentration of fasting triglycerides. Our objective was to assess the effects of rs12691 in glucose metabolism in Metabolic Syndrome (MetS) patients. Methods and results: Glucose metabolism was assessed by static (glucose, insulin, adiponectin, leptin and resistin plasma concentrations) and dynamic (disposition index, insulin sensitivity index, HOMA-IR and acute insulin response to glucose) indices, performed at baseline and after 12 weeks of 4 dietary interventions (high saturated fatty acid (SFA), high monounsaturated fatty acid (MUFA), low-fat and low-fat-high-n3 polyunsaturated fatty acid (PUFA)) in 486 subjects with MetS. Carriers of the minor A allele of rs12691 had altered disposition index (p = 0.0003), lower acute insulin response (p = 0.005) and a lower insulin sensitivity index (p = 0.025) indicating a lower insulin sensitivity and a lower insulin secretion, at baseline and at the end of the diets. Furthermore, A allele carriers displayed lower HDL concentration. Conclusion: The presence of the A allele of rs12691 influences glucose metabolism of MetS patients. Clinical Trials Registry number NCT00429195.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 53
Typ av publikation
tidskriftsartikel (53)
Typ av innehåll
refereegranskat (49)
övrigt vetenskapligt/konstnärligt (4)
Författare/redaktör
Blaak, Ellen E. (26)
Risérus, Ulf (25)
Drevon, Christian A. (22)
Roche, Helen M. (21)
Lovegrove, Julie A. (20)
Defoort, Catherine (20)
visa fler...
Lopez-Miranda, Jose (19)
Karlström, Brita (14)
Blaak, E. E. (14)
Kiec-Wilk, Beata (14)
Perez-Martinez, Pabl ... (11)
Tierney, Audrey C. (11)
Gjelstad, Ingrid M F (11)
Helal, Olfa (10)
Saris, Wim H. M. (9)
Roche, H. M. (9)
Drevon, C. A. (9)
Delgado-Lista, Javie ... (9)
Blaak, E (8)
Gulseth, Hanne L. (8)
Garcia-Rios, Antonio (8)
Phillips, Catherine ... (8)
Arner, P (7)
Lopez-Miranda, J. (7)
Dembinska-Kiec, Aldo ... (7)
Gjelstad, I. M. F. (6)
Lovegrove, J. A. (6)
Defoort, C. (6)
Shaw, Danielle I (6)
Ordovás, José M. (5)
Gulseth, H. L. (5)
Dembinska-Kiec, A. (5)
Lairon, Denis (5)
Planells, Richard (5)
Langin, D (4)
Boon, Hanneke, 1981- (4)
Ferguson, Jane F (4)
Astrup, A. (3)
Hercberg, Serge (3)
Blaak, EE (3)
McManus, Ross (3)
Cupples, L. Adrienne (3)
Perez-Martinez, P. (3)
Birkeland, K. I. (3)
Saris, W. H. (3)
Delgado-Lista, J. (3)
Goumidi, Louisa (3)
Leszczýnska-Golabek, ... (3)
McMonagle, Jolene (3)
van Hees, A. M. J. (3)
visa färre...
Lärosäte
Uppsala universitet (31)
Karolinska Institutet (11)
Göteborgs universitet (4)
Högskolan i Halmstad (4)
Lunds universitet (3)
Högskolan Kristianstad (1)
visa fler...
Kungliga Tekniska Högskolan (1)
Linköpings universitet (1)
visa färre...
Språk
Engelska (53)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (15)
Naturvetenskap (1)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy