SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Blanco Rivero Amaya) "

Sökning: WFRF:(Blanco Rivero Amaya)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Blanco-Rivero, Amaya, et al. (författare)
  • Phosphorylation Controls the Localization and Activation of the Lumenal Carbonic Anhydrase in Chlamydomonas reinhardtii
  • 2012
  • Ingår i: PLOS ONE. - : Public library science. - 1932-6203. ; 7:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Cah3 is the only carbonic anhydrase (CA) isoform located in the thylakoid lumen of Chlamydomonas reinhardtii. Previous studies demonstrated its association with the donor side of the photosystem II (PSII) where it is required for the optimal function of the water oxidizing complex. However this enzyme has also been frequently proposed to perform a critical function in inorganic carbon acquisition and CO2 fixation and all mutants lacking Cah3 exhibit very poor growth after transfer to low CO2 conditions. Results/Conclusions: In the present work we demonstrate that after transfer to low CO2, Cah3 is phosphorylated and that phosphorylation is correlated to changes in its localization and its increase in activity. When C. reinhardtii wild-type cells were acclimated to limiting CO2 conditions, the Cah3 activity increased about 5-6 fold. Under these conditions, there were no detectable changes in the level of the Cah3 polypeptide. The increase in activity was specifically inhibited in the presence of Staurosporine, a protein kinase inhibitor, suggesting that the Cah3 protein was post-translationally regulated via phosphorylation. Immunoprecipitation and in vitro dephosphorylation experiments confirm this hypothesis. In vivo phosphorylation analysis of thylakoid polypeptides indicates that there was a 3-fold increase in the phosphorylation signal of the Cah3 polypeptide within the first two hours after transfer to low CO2 conditions. The increase in the phosphorylation signal was correlated with changes in the intracellular localization of the Cah3 protein. Under high CO2 conditions, the Cah3 protein was only associated with the donor side of PSII in the stroma thylakoids. In contrast, in cells grown at limiting CO2 the protein was partly concentrated in the thylakoids crossing the pyrenoid, which did not contain PSII and were surrounded by Rubisco molecules. Significance: This is the first report of a CA being post-translationally regulated and describing phosphorylation events in the thylakoid lumen.
  •  
2.
  • Burén, Stefan, et al. (författare)
  • Importance of post-translational modifications for functionality of a chloroplast-localized carbonic anhydrase (CAH1) in Arabidopsis thaliana
  • 2011
  • Ingår i: PLOS ONE. - : Public Library of Science. - 1932-6203. ; 6:6, s. e21021-
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundThe Arabidopsis CAH1 alpha-type carbonic anhydrase is one of the few plant proteins known to be targeted to the chloroplast through the secretory pathway. CAH1 is post-translationally modified at several residues by the attachment of N-glycans, resulting in a mature protein harbouring complex-type glycans. The reason of why trafficking through this non-canonical pathway is beneficial for certain chloroplast resident proteins is not yet known. Therefore, to elucidate the significance of glycosylation in trafficking and the effect of glycosylation on the stability and function of the protein, epitope-labelled wild type and mutated versions of CAH1 were expressed in plant cells.Methodology/Principal FindingsTransient expression of mutant CAH1 with disrupted glycosylation sites showed that the protein harbours four, or in certain cases five, N-glycans. While the wild type protein trafficked through the secretory pathway to the chloroplast, the non-glycosylated protein formed aggregates and associated with the ER chaperone BiP, indicating that glycosylation of CAH1 facilitates folding and ER-export. Using cysteine mutants we also assessed the role of disulphide bridge formation in the folding and stability of CAH1. We found that a disulphide bridge between cysteines at positions 27 and 191 in the mature protein was required for correct folding of the protein. Using a mass spectrometric approach we were able to measure the enzymatic activity of CAH1 protein. Under circumstances where protein N-glycosylation is blocked in vivo, the activity of CAH1 is completely inhibited.Conclusions/SignificanceWe show for the first time the importance of post-translational modifications such as N-glycosylation and intramolecular disulphide bridge formation in folding and trafficking of a protein from the secretory pathway to the chloroplast in higher plants. Requirements for these post-translational modifications for a fully functional native protein explain the need for an alternative route to the chloroplast.
  •  
3.
  •  
4.
  •  
5.
  • Leganés, Francisco, et al. (författare)
  • Wide variation in the cyanobacterial complement of presumptive penicillin-binding proteins
  • 2005
  • Ingår i: Archives of Microbiology. - New York : Springer. - 0302-8933 .- 1432-072X. ; 184:4, s. 234-248
  • Tidskriftsartikel (refereegranskat)abstract
    • A genomic analysis of putative penicillin-binding proteins (PBPs) that are involved in the synthesis of the peptidoglycan layer of the cell wall and are encoded in 12 cyanobacterial genomes was performed in order to help elucidate the role(s) of these proteins in peptidoglycan synthesis, especially during cyanobacterial cellular differentiation. The analysis suggested that the minimum set of PBPs needed to assemble the peptidoglycan layer in cyanobacteria probably does not exceed one bifunctional transpeptidase-transglycosylase Class A high-molecular-weight PBP; two Class B high-molecular-weight PBPs, one of them probably involved in cellular elongation and the other in septum formation; and one low-molecular-weight PBP. The low-molecular-weight PBPs of all of the cyanobacteria analyzed are putative endopeptidases and are encoded by fewer genes than in Escherichia coli. We show that in Anabaena sp. strain PCC 7120, predicted proteins All2981 and Alr4579, like Alr5101, are Class A high-molecular-weight PBPs that are required for the functional differentiation of aerobically diazotrophic heterocysts, indicating that some members of this class of PBPs are required specifically for cellular developmental processes.
  •  
6.
  • Turkina, Maria V, et al. (författare)
  • CO2 limitation induces specific redox-dependent protein phosphorylation in Chlamydomonas reinhardtii
  • 2006
  • Ingår i: Proteomics. - Weinheim : Wiley. - 1615-9853 .- 1615-9861. ; 6:9, s. 2693-2704
  • Tidskriftsartikel (refereegranskat)abstract
    • Acclimation of the green alga Chlamydomonas reinhardtii to limiting environmental CO2 induced specific protein phosphorylation at the surface of photosynthetic thylakoid membranes. Four phosphopeptides were identified and sequenced by nanospray quadrupole TOF MS from the cells acclimating to limiting CO2. One phosphopeptide originated from a protein that has not been annotated. We found that this unknown expressed protein (UEP) was encoded in the genome of C. reinhardtii. Three other phosphorylated peptides belonged to Lci5 protein encoded by the low-CO2-inducible gene 5 (lci5). The phosphorylation sites were mapped in the tandem repeats of Lci5 ensuring phosphorylation of four serine and three threonine residues in the protein. Immunoblotting with Lci5-specific antibodies revealed that Lci5 was localized in chloroplast and confined to the stromal side of the thylakoid membranes. Phosphorylation of Lci5 and UEP occurred strictly at limiting CO2; it required reduction of electron carriers in the thylakoid membrane, but was not induced by light. Both proteins were phosphorylated in the low-CO2-exposed algal mutant deficient in the light-activated protein kinase Stt7. Phosphorylation of previously unknown basic proteins UEP and Lci5 by specific redox-dependent protein kinase(s) in the photosynthetic membranes reveals the early response of green algae to limitation in the environmental inorganic carbon.
  •  
7.
  • Turkina, Maria V, et al. (författare)
  • Environmentally modulated phosphoproteome of photosynthetic membranes in the green alga Chlamydomonas reinhardtii
  • 2006
  • Ingår i: Molecular & Cellular Proteomics. - Bethesda : American society of biochemistry and molecular biology. - 1535-9476 .- 1535-9484. ; 5:8, s. 1412-1425
  • Tidskriftsartikel (refereegranskat)abstract
    • Mapping of in vivo protein phosphorylation sites in photosynthetic membranes of the green alga Chlamydomonas reinhardtii revealed that the major environmentally dependent changes in phosphorylation are clustered at the interface between the photosystem II (PSII) core and its light-harvesting antennae (LHCII). The photosynthetic membranes that were isolated form the algal cells exposed to four distinct environmental conditions affecting photosynthesis: (i) dark aerobic, corresponding to photosynthetic State 1; (ii) dark under nitrogen atmosphere, corresponding to photosynthetic State 2; (iii) moderate light; and (iv) high light. The surface-exposed phosphorylated peptides were cleaved from the membrane by trypsin, methyl-esterified, enriched by immobilized metal affinity chromatography, and sequenced by nanospray-quadrupole time-of-flight mass spectrometry. A total of 19 in vivo phosphorylation sites were mapped in the proteins corresponding to 15 genes in C. reinhardtii. Amino-terminal acetylation of seven proteins was concomitantly determined. Sequenced amino termini of six mature LHCII proteins differed from the predicted ones. The State 1-to-State 2 transition induced phosphorylation of the PSII core components D2 and PsbR and quadruple phosphorylation of a minor LHCII antennae subunit, CP29, as well as phosphorylation of constituents of a major LHCII complex, Lhcbm1 and Lhcbm10. Exposure of the algal cells to either moderate or high light caused additional phosphorylation of the D1 and CP43 proteins of the PSII core. The high light treatment led to specific hyperphosphorylation of CP29 at seven distinct residues, phosphorylation of another minor LHCII constituent, CP26, at a single threonine, and double phosphorylation of additional subunits of a major LHCII complex including Lhcbm4, Lhcbm6, Lhcbm9, and Lhcbm11. Environmentally induced protein phosphorylation at the interface of PSII core and the associated antenna proteins, particularly multiple differential phosphorylations of CP29 linker protein, suggests the mechanisms for control of photosynthetic state transitions and for LHCII uncoupling from PSII under high light stress to allow thermal energy dissipation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy