SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Blanke Jan) "

Sökning: WFRF:(Blanke Jan)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Blanke, Jan Hendrik, et al. (författare)
  • Assessing the impact of changes in land-use intensity and climate on simulated trade-offs between crop yield and nitrogen leaching
  • 2017
  • Ingår i: Agriculture, Ecosystems and Environment. - : Elsevier BV. - 0167-8809. ; 239, s. 385-398
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, a global vegetation model (LPJ-GUESS) is forced with spatial information (Nomenclature of Units for Territorial Statistics (NUTS) 2 level) of land-use intensity change in the form of nitrogen (N) fertilization derived from a model chain which informed the Common Agricultural Policy Regionalized Impact (CAPRI) model. We analysed the combined role of climate change and land-use intensity change for trade-offs between agricultural yield and N leaching in the European Union under two plausible scenarios up until 2040. Furthermore, we assessed both driver importance and uncertainty in future trends based on an alternative land-use intensity dataset derived from an integrated assessment model. LPJ-GUESS simulated an increase in wheat and maize yield but also N leaching for most regions when driven by changes in land-use intensity and climate under RCP 8.5. Under RCP 4.5, N leaching is reduced in 53% of the regions while there is a trade-off in crop productivity. The most important factors influencing yield were CO2 (wheat) and climate (maize), but N application almost equaled these in importance. For N leaching, N application was the most important factor, followed by climate. Therefore, using a constant N application dataset in the absence of future projections has a substantial effect on simulated ecosystem responses, especially for maize yield and N leaching. This study is a first assessment of future N leaching and yield responses based on projections of climate and land-use intensity. It further highlights the importance of accounting for changes in future N applications and land-use intensity in general when evaluating environmental impacts over long time periods.
  •  
2.
  • Blanke, Jan Hendrik, et al. (författare)
  • Effect of climate data on simulated carbon and nitrogen balances for Europe
  • 2016
  • Ingår i: Journal of Geophysical Research - Biogeosciences. - 2169-8953. ; 121:5, s. 1352-1371
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, we systematically assess the spatial variability in carbon and nitrogen balance simulations related to the choice of global circulation models (GCMs), representative concentration pathways (RCPs), spatial resolutions, and the downscaling methods used as calculated with LPJ-GUESS. We employed a complete factorial design and performed 24 simulations for Europe with different climate input data sets and different combinations of these four factors. Our results reveal that the variability in simulated output in Europe is moderate with 35.6%–93.5% of the total variability being common among all combinations of factors. The spatial resolution is the most important factor among the examined factors, explaining 1.5%–10.7% of the total variability followed by GCMs (0.3%–7.6%), RCPs (0%–6.3%), and downscaling methods (0.1%–4.6%). The higher-order interactions effect that captures nonlinear relations between the factors and random effects is pronounced and accounts for 1.6%–45.8% to the total variability. The most distinct hot spots of variability include the mountain ranges in North Scandinavia and the Alps, and the Iberian Peninsula. Based on our findings, we advise to conduct the application of models such as LPJ-GUESS at a reasonably high spatial resolution which is supported by the model structure. There is no notable gain in simulations of ecosystem carbon and nitrogen stocks and fluxes from using regionally downscaled climate in preference to bias-corrected, bilinearly interpolated CMIP5 projections.
  •  
3.
  • Blanke, Jan Hendrik (författare)
  • European ecosystems on a changing planet : Integrating climate change and land-use intensity data
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Dynamic global vegetation models are mathematical models that provide a bottom-up description of plant communities. They explicitly model physiological and population-level processes such as growth, photosynthesis, carbon allocation, regeneration and mortality.However, there are a number of challenges to meet in the context of mechanistic vegetation models which can be extrapolated to new environmental conditions.This thesis aims to advance our knowledge of the vegetation model LPJ-GUESS by analyzing both sensitivity and uncertainty towards input datasets such as climate and land-use intensity data and their derivation. It further aims to improve the model performance by including former neglected processes like land-use intensity and daily management for grasslands. Beyond these rather technical aims, this thesis also investigates possible trade-offs between society relevant ecosystem functions like crop yield and carbon storage via integrating climate data and up-to-date land-use intensity information.The results show that simulations with LPJ-GUESS for Europe were most sensitive to the spatial resolution of the input climate data followed by the choice of the climate model. When driven with projections of climate and land-use intensity in form of nitrogen fertilizer, simulations of maize yield and nitrogen leaching were most sensitive to nitrogen applications followed by climate while wheat yield was most sensitive to changes in carbon dioxide followed by nitrogen applications.While future yields of wheat and maize increased in Europe under representative concentration pathways 4.5 and 8.5, these increases were accompanied with increases of nitrogen leaching in many regions. However, leaching decreased in about 53% of the regions under pathway 4.5 while it increased in 76% of the regions under pathway 8.5.It is also shown in this thesis that grassland productivity cannot be adequately captured without including land-use intensity data in form of nitrogen fertilizer. Incorporating daily grassland management and fertilizer applications into LPJ-GUESS improved the model significantly. Finally, afforestation had overall positive effects both on plant species richness and carbon storage in Saxony, Germany. However, a number of locations were identified for which afforestation would lead to a decrease in plant species richness.
  •  
4.
  • Blanke, Jan, et al. (författare)
  • Implications of accounting for management intensity on carbon and nitrogen balances of European grasslands
  • 2018
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 13:8
  • Tidskriftsartikel (refereegranskat)abstract
    • European managed grasslands are amongst the most productive in the world. Besides temperature and the amount and timing of precipitation, grass production is also highly controlled by applications of nitrogen fertilizers and land management to sustain a high productivity. Since management characteristics of pastures vary greatly across Europe, land-use intensity and their projections are critical input variables in earth system modeling when examining and predicting the effects of increasingly intensified agricultural and livestock systems on the environment. In this study, we aim to improve the representation of pastures in the dynamic global vegetation model LPJ-GUESS. This is done by incorporating daily carbon allocation for grasses as a foundation to further implement daily land management routines and land-use intensity data into the model to discriminate between intensively and extensively used regions. We further compare our new simulations with leaf area index observations, reported regional grassland productivity, and simulations conducted with the vegetation model ORCHIDEE-GM. Additionally, we analyze the implications of including pasture fertilization and daily management compared to the standard version of LPJ-GUESS. Our results demonstrate that grassland productivity cannot be adequately captured without including land-use intensity data in form of nitrogen applications. Using this type of information improved spatial patterns of grassland productivity significantly compared to standard LPJ-GUESS. In general, simulations for net primary productivity, net ecosystem carbon balance and nitrogen leaching were considerably increased in the extended version. Finally, the adapted version of LPJ-GUESS, driven with projections of climate and land-use intensity, simulated an increase in potential grassland productivity until 2050 for several agro-climatic regions, most notably for the Mediterranean North, the Mediterranean South, the Atlantic Central and the Atlantic South.
  •  
5.
  • Lautenbach, Sven, et al. (författare)
  • Trade-offs between plant species richness and carbon storage in the context of afforestation – Examples from afforestation scenarios in the Mulde Basin, Germany
  • 2017
  • Ingår i: Ecological Indicators. - : Elsevier BV. - 1470-160X. ; 73, s. 139-155
  • Tidskriftsartikel (refereegranskat)abstract
    • The German Federal State of Saxony aims to increase forest cover, supported by the implementation of afforestation programs. To analyze consequences of an increase in forest cover, this study investigates possible trade-offs between carbon storage and plant biodiversity caused by afforestation. Six afforestation scenarios with total forest cover ranging from 27.7% to 46% were generated in the Mulde river basin in Saxony with regard to different forest types. Carbon storage was calculated by the process-based Dynamic Vegetation Model LPJ-GUESS while random forest models were used to predict changes in plant species richness. We used eight different plant groups as responses: total number of plant species, endangered species, as well as species grouped by native status (three groups) and pollination traits (three groups). Afforestation led to an increase in carbon storage that was slightly stronger in coniferous forests as compared to deciduous forests. The relationship between plant species richness and afforestation was context dependent. Species richness showed a non-linear relationship with forest cover share. The relationship was influenced by shares of land use types, climatic conditions and land use configuration expressed by the number of land use patches. The effect of forest type on plant species richness was marginal. On average the relationship between carbon storage and plant species richness was synergistic for most plant groups. However, the relationship between change in species richness and change in carbon storage varied across space. This changing relationship was used to identify priority areas for afforestation. The different plant groups responded differently to an increase in forest cover. The change in species richness for Red List species was relatively distinct from the other species groups. Neophytes and archeophytes (i.e. alien plant species introduced after and before the discovery of the Americas) showed a similar response to the afforestation scenarios. While afforestation had overall positive effects both on plant species richness and carbon storage, a number of locations were identified for which afforestation would lead to a decrease in plant species richness. Spatial planning should therefore avoid afforestation at these locations.
  •  
6.
  • Orlecka-Sikora, Beata, et al. (författare)
  • An open data infrastructure for the study of anthropogenic hazards linked to georesource exploitation
  • 2020
  • Ingår i: Scientific Data. - : Springer. - 2052-4463. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Mining, water-reservoir impoundment, underground gas storage, geothermal energy exploitation and hydrocarbon extraction have the potential to cause rock deformation and earthquakes, which may be hazardous for people, infrastructure and the environment. Restricted access to data constitutes a barrier to assessing and mitigating the associated hazards. Thematic Core Service Anthropogenic Hazards (TCS AH) of the European Plate Observing System (EPOS) provides a novel e-research infrastructure. The core of this infrastructure, the IS-EPOS Platform (tcs.ah-epos.eu) connected to international data storage nodes offers open access to large grouped datasets (here termed episodes), comprising geoscientific and associated data from industrial activity along with a large set of embedded applications for their efficient data processing, analysis and visualization. The novel team-working features of the IS-EPOS Platform facilitate collaborative and interdisciplinary scientific research, public understanding of science, citizen science applications, knowledge dissemination, data-informed policy-making and the teaching of anthropogenic hazards related to georesource exploitation. TCS AH is one of 10 thematic core services forming EPOS, a solid earth science European Research Infrastructure Consortium (ERIC) (www.epos-ip.org).
  •  
7.
  • Runnström, Micael C., et al. (författare)
  • Image analysis to monitor experimental trampling and vegetation recovery in Icelandic plant communities
  • 2019
  • Ingår i: Environments - MDPI. - : MDPI AG. - 2076-3298. ; 6:9
  • Tidskriftsartikel (refereegranskat)abstract
    • With growing tourism in natural areas, monitoring recreational impacts is becoming increasingly important. This paper aims to evaluate how di_erent trampling intensities a_ect some common Icelandic plant communities by using digital photographs to analyze and quantify vegetation in experimental plots and to monitor vegetation recovery rates over a consecutive three-year period. Additionally, it seeks to evaluate the use of image analysis for monitoring recreational impact in natural areas. Experimental trampling was conducted in two different sites representing the lowlands and the highlands in 2014, and the experimental plots were revisited in 2015, 2016, and 2017. The results show that moss has the highest sensitivity to trampling, and furthermore has a slow recovery rate. Moss-heaths in the highlands also show higher sensitivity and slower recovery rates than moss-heaths in the lowlands, and grasslands show the highest resistance to trampling. Both methods tested, i.e., Green Chromatic Coordinate (GCC) and Maximum Likelihood Classification (MLC), showed significant correlation with the trampling impact. Using image analysis to quantify the status and define limits of use will likely be a valuable and vital element in managing recreational areas. Unmanned aerial vehicles (UAVs) will add a robust way to collect photographic data that can be processed into vegetation parameters to monitor recreational impacts in natural areas.
  •  
8.
  • van Sebille, Erik, et al. (författare)
  • Lagrangian ocean analysis : Fundamentals and practices
  • 2018
  • Ingår i: Ocean Modelling. - : Elsevier BV. - 1463-5003 .- 1463-5011. ; 121, s. 49-75
  • Forskningsöversikt (refereegranskat)abstract
    • Lagrangian analysis is a powerful way to analyse the output of ocean circulation models and other ocean velocity data such as from altimetry. In the Lagrangian approach, large sets of virtual particles are integrated within the three-dimensional, time-evolving velocity fields. Over several decades, a variety of tools and methods for this purpose have emerged. Here, we review the state of the art in the field of Lagrangian analysis of ocean velocity data, starting from a fundamental kinematic framework and with a focus on large-scale open ocean applications. Beyond the use of explicit velocity fields, we consider the influence of unresolved physics and dynamics on particle trajectories. We comprehensively list and discuss the tools currently available for tracking virtual particles. We then showcase some of the innovative applications of trajectory data, and conclude with some open questions and an outlook. The overall goal of this review paper is to reconcile some of the different techniques and methods in Lagrangian ocean analysis, while recognising the rich diversity of codes that have and continue to emerge, and the challenges of the coming age of petascale computing.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy