SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Blau Helen M. M.) "

Sökning: WFRF:(Blau Helen M. M.)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Togninalli, Matteo, et al. (författare)
  • Machine learning-based classification of dual fluorescence signals reveals muscle stem cell fate transitions in response to regenerative niche factors
  • 2023
  • Ingår i: NPJ REGENERATIVE MEDICINE. - : Springer Nature. - 2057-3995. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The proper regulation of muscle stem cell (MuSC) fate by cues from the niche is essential for regeneration of skeletal muscle. How pro-regenerative niche factors control the dynamics of MuSC fate decisions remains unknown due to limitations of population-level endpoint assays. To address this knowledge gap, we developed a dual fluorescence imaging time lapse (Dual-FLIT) microscopy approach that leverages machine learning classification strategies to track single cell fate decisions with high temporal resolution. Using two fluorescent reporters that read out maintenance of stemness and myogenic commitment, we constructed detailed lineage trees for individual MuSCs and their progeny, classifying each division event as symmetric self-renewing, asymmetric, or symmetric committed. Our analysis reveals that treatment with the lipid metabolite, prostaglandin E2 (PGE2), accelerates the rate of MuSC proliferation over time, while biasing division events toward symmetric self-renewal. In contrast, the IL6 family member, Oncostatin M (OSM), decreases the proliferation rate after the first generation, while blocking myogenic commitment. These insights into the dynamics of MuSC regulation by niche cues were uniquely enabled by our Dual-FLIT approach. We anticipate that similar binary live cell readouts derived from Dual-FLIT will markedly expand our understanding of how niche factors control tissue regeneration in real time.
  •  
2.
  • Maska, Martin, et al. (författare)
  • A benchmark for comparison of cell tracking algorithms
  • 2014
  • Ingår i: Bioinformatics. - : Oxford University Press (OUP). - 1367-4803 .- 1367-4811. ; 30:11, s. 1609-1617
  • Tidskriftsartikel (refereegranskat)abstract
    • Motivation: Automatic tracking of cells in multidimensional time-lapse fluorescence microscopy is an important task in many biomedical applications. A novel framework for objective evaluation of cell tracking algorithms has been established under the auspices of the IEEE International Symposium on Biomedical Imaging 2013 Cell Tracking Challenge. In this article, we present the logistics, datasets, methods and results of the challenge and lay down the principles for future uses of this benchmark. Results: The main contributions of the challenge include the creation of a comprehensive video dataset repository and the definition of objective measures for comparison and ranking of the algorithms. With this benchmark, six algorithms covering a variety of segmentation and tracking paradigms have been compared and ranked based on their performance on both synthetic and real datasets. Given the diversity of the datasets, we do not declare a single winner of the challenge. Instead, we present and discuss the results for each individual dataset separately.
  •  
3.
  • Blau, Helen M., et al. (författare)
  • Elastic substrates and methods of use in cell manipulation and culture
  • 2010
  • Patent (populärvet., debatt m.m.)abstract
    • Methods are provided for the ex vivo manipulation of cells, stem cells and other reproductive cells, by manipulating the cells in a container or device comprising an elastic substrate, wherein the substrate has an elasticity that mimics the elasticity of a native microenvironment of the cell.
  •  
4.
  • Gilbert, Penney M., et al. (författare)
  • A single cell bioengineering approach to elucidate mechanisms of adult stem cell self-renewal
  • 2012
  • Ingår i: Integrative Biology. - : Oxford University Press (OUP). - 1757-9694 .- 1757-9708. ; 4:4, s. 360-367
  • Tidskriftsartikel (refereegranskat)abstract
    • The goal of regenerative medicine is to restore form and function to damaged and aging tissues. Adult stem cells, present in tissues such as skeletal muscle, comprise a reservoir of cells with a remarkable capacity to proliferate and repair tissue damage. Muscle stem cells, known as satellite cells, reside in a quiescent state in an anatomically distinct compartment, or niche, ensheathed between the membrane of the myofiber and the basal lamina. Recently, procedures for isolating satellite cells were developed and experiments testing their function upon transplantation into muscles revealed an extraordinary potential to contribute to muscle fibers and access and replenish the satellite cell compartment. However, these properties are rapidly lost once satellite cells are plated in culture. Accordingly, elucidating the role of extrinsic factors in controlling muscle stem cell fate, in particular self-renewal, is critical. Through careful design of bioengineered culture platforms, analysis of specific proteins presented to stem cells is possible. Critical to the success of the approach is single cell analysis, as more rapidly proliferating progenitors may mask the behavior of stem cells that proliferate slowly. Bioengineering approaches provide a potent means of gaining insight into the role of extrinsic factors in the stem cell microenvironment on stem cell function and the mechanisms that control their diverse fates. Ultimately, the multidisciplinary approach presented here will lead to novel therapeutic strategies for degenerative diseases.
  •  
5.
  • Magnusson, Klas E. G., 1985-, et al. (författare)
  • Global linking of cell tracks using the Viterbi algorithm
  • 2015
  • Ingår i: IEEE Transactions on Medical Imaging. - : IEEE Press. - 0278-0062 .- 1558-254X. ; 34:4, s. 911-929
  • Tidskriftsartikel (refereegranskat)abstract
    • Automated tracking of living cells in microscopy image sequences is an important and challenging problem. With this application in mind, we propose a global track linking algorithm, which links cell outlines generated by a segmentation algorithm into tracks. The algorithm adds tracks to the image sequence one at a time, in a way which uses information from the complete image sequence in every linking decision. This is achieved by finding the tracks which give the largest possible increases to a probabilistically motivated scoring function, using the Viterbi algorithm. We also present a novel way to alter previously created tracks when new tracks are created, thus mitigating the effects of error propagation. The algorithm can handle mitosis, apoptosis, and migration in and out of the imaged area, and can also deal with false positives, missed detections, and clusters of jointly segmented cells. The algorithm performance is demonstrated on two challenging datasets acquired using bright-field microscopy, but in principle, the algorithm can be used with any cell type and any imaging technique, presuming there is a suitable segmentation algorithm.
  •  
6.
  • Chenouard, Nicolas, et al. (författare)
  • Objective comparison of particle tracking methods
  • 2014
  • Ingår i: Nature Methods. - : Springer Science and Business Media LLC. - 1548-7091 .- 1548-7105. ; 11:3, s. 281-U247
  • Tidskriftsartikel (refereegranskat)abstract
    • Particle tracking is of key importance for quantitative analysis of intracellular dynamic processes from time-lapse microscopy image data. Because manually detecting and following large numbers of individual particles is not feasible, automated computational methods have been developed for these tasks by many groups. Aiming to perform an objective comparison of methods, we gathered the community and organized an open competition in which participating teams applied their own methods independently to a commonly defined data set including diverse scenarios. Performance was assessed using commonly defined measures. Although no single method performed best across all scenarios, the results revealed clear differences between the various approaches, leading to notable practical conclusions for users and developers.
  •  
7.
  • Ho, Andrew T. V., et al. (författare)
  • Prostaglandin E2 is essential for efficacious skeletal muscle stem-cell function, augmenting regeneration and strength
  • 2017
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : NATL ACAD SCIENCES. - 0027-8424 .- 1091-6490. ; 114:26, s. 6675-6684
  • Tidskriftsartikel (refereegranskat)abstract
    • Skeletal muscles harbor quiescent muscle-specific stem cells (MuSCs) capable of tissue regeneration throughout life. Muscle injury precipitates a complex inflammatory response in which a multiplicity of cell types, cytokines, and growth factors participate. Here we show that Prostaglandin E2 (PGE2) is an inflammatory cytokine that directly targets MuSCs via the EP4 receptor, leading to MuSC expansion. An acute treatment with PGE2 suffices to robustly augment muscle regeneration by either endogenous or transplanted MuSCs. Loss of PGE2 signaling by specific genetic ablation of the EP4 receptor in MuSCs impairs regeneration, leading to decreased muscle force. Inhibition of PGE2 production through nonsteroidal anti-inflammatory drug (NSAID) administration just after injury similarly hinders regeneration and compromises muscle strength. Mechanistically, the PGE2 EP4 interaction causes MuSC expansion by triggering a cAMP/phosphoCREB pathway that activates the proliferation-inducing transcription factor, Nurr1. Our findings reveal that loss of PGE2 signaling to MuSCs during recovery from injury impedes muscle repair and strength. Through such gain-or loss-of-function experiments, we found that PGE2 signaling acts as a rheostat for muscle stem-cell function. Decreased PGE2 signaling due to NSAIDs or increased PGE2 due to exogenous delivery dictates MuSC function, which determines the outcome of regeneration. The markedly enhanced and accelerated repair of damaged muscles following intramuscular delivery of PGE2 suggests a previously unrecognized indication for this therapeutic agent.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy