SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Blystad Ida) "

Sökning: WFRF:(Blystad Ida)

  • Resultat 1-10 av 33
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abramian, David, 1992-, et al. (författare)
  • Evaluation of inverse treatment planning for gamma knife radiosurgery using fMRI brain activation maps as organs at risk
  • 2023
  • Ingår i: Medical physics (Lancaster). - : WILEY. - 0094-2405. ; 50:9, s. 5297-5311
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Stereotactic radiosurgery (SRS) can be an effective primary or adjuvant treatment option for intracranial tumors. However, it carries risks of various radiation toxicities, which can lead to functional deficits for the patients. Current inverse planning algorithms for SRS provide an efficient way for sparing organs at risk (OARs) by setting maximum radiation dose constraints in the treatment planning process.Purpose: We propose using activation maps from functional MRI (fMRI) to map the eloquent regions of the brain and define functional OARs (fOARs) for Gamma Knife SRS treatment planning.Methods: We implemented a pipeline for analyzing patient fMRI data, generating fOARs from the resulting activation maps, and loading them onto the GammaPlan treatment planning software. We used the Lightning inverse planner to generate multiple treatment plans from open MRI data of five subjects, and evaluated the effects of incorporating the proposed fOARs.Results: The Lightning optimizer designs treatment plans with high conformity to the specified parameters. Setting maximum dose constraints on fOARs successfully limits the radiation dose incident on them, but can have a negative impact on treatment plan quality metrics. By masking out fOAR voxels surrounding the tumor target it is possible to achieve high quality treatment plans while controlling the radiation dose on fOARs.Conclusions: The proposed method can effectively reduce the radiation dose incident on the eloquent brain areas during Gamma Knife SRS of brain tumors.
  •  
2.
  • Abramian, David, 1992- (författare)
  • Modern multimodal methods in brain MRI
  • 2023
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Magnetic resonance imaging (MRI) is one of the pillars of modern medical imaging, providing a non-invasive means to generate 3D images of the body with high soft-tissue contrast. Furthermore, the possibilities afforded by the design of MRI sequences enable the signal to be sensitized to a multitude of physiological tissue properties, resulting in a wide variety of distinct MRI modalities for clinical and research use. This thesis presents a number of advanced brain MRI applications, which fulfill, to differing extents, two complementary aims. On the one hand, they explore the benefits of a multimodal approach to MRI, combining structural, functional and diffusion MRI, in a variety of contexts. On the other, they emphasize the use of advanced mathematical and computational tools in the analysis of MRI data, such as deep learning, Bayesian statistics, and graph signal processing. Paper I introduces an anatomically-adapted extension to previous work in Bayesian spatial priors for functional MRI data, where anatomical information is introduced from a T1-weighted image to compensate for the low anatomical contrast of functional MRI data. It has been observed that the spatial correlation structure of the BOLD signal in brain white matter follows the orientation of the underlying axonal fibers. Paper II argues about the implications of this fact on the ideal shape of spatial filters for the analysis of white matter functional MRI data. By using axonal orientation information extracted from diffusion MRI, and leveraging the possibilities afforded by graph signal processing, a graph-based description of the white matter structure is introduced, which, in turn, enables the definition of spatial filters whose shape is adapted to the underlying axonal structure, and demonstrates the increased detection power resulting from their use. One of the main clinical applications of functional MRI is functional localization of the eloquent areas of the brain prior to brain surgery. This practice is widespread for various invasive surgeries, but is less common for stereotactic radiosurgery (SRS), a non-invasive surgical procedure wherein tissue is ablated by concentrating several beams of high-energy radiation. Paper III describes an analysis and processing pipeline for functional MRI data that enables its use for functional localization and delineation of organs-at-risk for Elekta GammaKnife SRS procedures. Paper IV presents a deep learning model for super-resolution of diffusion MRI fiber ODFs, which outperforms standard interpolation methods in estimating local axonal fiber orientations in white matter. Finally, Paper V demonstrates that some popular methods for anonymizing facial data in structural MRI volumes can be partially reversed by applying generative deep learning models, highlighting one way in which the enormous power of deep learning models can potentially be put to use for harmful purposes. 
  •  
3.
  • Akbar, Muhammad Usman, 1990-, et al. (författare)
  • Brain tumor segmentation using synthetic MR images - A comparison of GANs and diffusion models
  • 2024
  • Ingår i: Scientific Data. - : Nature Publishing Group. - 2052-4463. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Large annotated datasets are required for training deep learning models, but in medical imaging data sharing is often complicated due to ethics, anonymization and data protection legislation. Generative AI models, such as generative adversarial networks (GANs) and diffusion models, can today produce very realistic synthetic images, and can potentially facilitate data sharing. However, in order to share synthetic medical images it must first be demonstrated that they can be used for training different networks with acceptable performance. Here, we therefore comprehensively evaluate four GANs (progressive GAN, StyleGAN 1–3) and a diffusion model for the task of brain tumor segmentation (using two segmentation networks, U-Net and a Swin transformer). Our results show that segmentation networks trained on synthetic images reach Dice scores that are 80%–90% of Dice scores when training with real images, but that memorization of the training images can be a problem for diffusion models if the original dataset is too small. Our conclusion is that sharing synthetic medical images is a viable option to sharing real images, but that further work is required. The trained generative models and the generated synthetic images are shared on AIDA data hub.
  •  
4.
  •  
5.
  •  
6.
  • Blystad, Ida, 1972- (författare)
  • Clinical Applications of Synthetic MRI of the Brain
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Magnetic Resonance Imaging (MRI) has a high soft-tissue contrast with a high sensitivity for detecting pathological changes in the brain. Conventional MRI is a time-consuming method with multiple scans that relies on the visual assessment of the neuroradiologist. Synthetic MRI uses one scan to produce conventional images, but also quantitative maps based on relaxometry, that can be used to quantitatively analyse tissue properties and pathological changes. The studies presented here apply the use of synthetic MRI of the brain in different clinical settings.In the first study, synthetic MR images were compared to conventional MR images in 22 patients. The contrast, the contrast-to-noise ratio, and the diagnostic quality were assessed. Image quality was perceived to be inferior in the synthetic images, but synthetic images agreed with the clinical diagnoses to the same extent as the conventional images.Patients with early multiple sclerosis were analysed in the second study. In patients with multiple sclerosis, contrast-enhancing white matter lesions are a sign of active disease and can indicate a need for a change in therapy. Gadolinium-based contrast agents are used to detect active lesions, but concern has been raised regarding the long-term effects of repeated use of gadolinium. In this study, relaxometry was used to evaluate whether pre-contrast injection tissue-relaxation rates and proton density can identify active lesions without gadolinium. The findings suggest that active lesions often have relaxation times and proton density that differ from non-enhancing lesions, but with some overlap. This makes it difficult to replace gadolinium-based contrast agent injection with synthetic MRI in the monitoring of MS patients.Malignant gliomas are primary brain tumours with contrast enhancement due to a defective blood-brain barrier. However, they also grow in an infiltrative, diffuse manner, making it difficult to clearly delineate them from surrounding normal brain tissue in the diagnostic workup, at surgery, and during follow-up. The contrast-enhancing part of the tumour is easily visualised, but not the diffuse infiltration. In studies three and four, synthetic MRI was used to analyse the peritumoral area of malignant gliomas, and revealed quantitative findings regarding peritumoral relaxation changes and non-visible contrast enhancement suggestive of non-visible infiltrative tumour growth.In conclusion, synthetic MRI provides quantitative information about the brain tissue and this could improve the diagnosis and treatment for patients.
  •  
7.
  •  
8.
  • Blystad, Ida, et al. (författare)
  • Quantitative MRI for Analysis of Active Multiple Sclerosis Lesions without Gadolinium-Based Contrast Agent
  • 2016
  • Ingår i: American Journal of Neuroradiology. - : American Society of Neuroradiology (ASNR). - 0195-6108 .- 1936-959X. ; 37:1, s. 94-100
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND AND PURPOSE: Contrast-enhancing MS lesions are important markers of active inflammation in the diagnostic work-up of MS and in disease monitoring with MR imaging. Because intravenous contrast agents involve an expense and a potential risk of adverse events, it would be desirable to identify active lesions without using a contrast agent. The purpose of this study was to evaluate whether pre-contrast injection tissue-relaxation rates and proton density of MS lesions, by using a new quantitative MR imaging sequence, can identify active lesions.MATERIALS AND METHODS: Forty-four patients with a clinical suspicion of MS were studied. MR imaging with a standard clinical MS protocol and a quantitative MR imaging sequence was performed at inclusion (baseline) and after 1 year. ROIs were placed in MS lesions, classified as nonenhancing or enhancing. Longitudinal and transverse relaxation rates, as well as proton density were obtained from the quantitative MR imaging sequence. Statistical analyses of ROI values were performed by using a mixed linear model, logistic regression, and receiver operating characteristic analysis.RESULTS: Enhancing lesions had a significantly (P < .001) higher mean longitudinal relaxation rate (1.22 ± 0.36 versus 0.89 ± 0.24), a higher mean transverse relaxation rate (9.8 ± 2.6 versus 7.4 ± 1.9), and a lower mean proton density (77 ± 11.2 versus 90 ± 8.4) than nonenhancing lesions. An area under the receiver operating characteristic curve value of 0.832 was obtained.CONCLUSIONS: Contrast-enhancing MS lesions often have proton density and relaxation times that differ from those in nonenhancing lesions, with lower proton density and shorter relaxation times in enhancing lesions compared with nonenhancing lesions.
  •  
9.
  • Blystad, Ida, 1972-, et al. (författare)
  • Quantitative MRI for analysis of peritumoral edema in malignant gliomas
  • 2017
  • Ingår i: PLOS ONE. - : Public Library of Science. - 1932-6203. ; 12:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and purpose Damage to the blood-brain barrier with subsequent contrast enhancement is a hallmark of glioblastoma. Non-enhancing tumor invasion into the peritumoral edema is, however, not usually visible on conventional magnetic resonance imaging. New quantitative techniques using relaxometry offer additional information about tissue properties. The aim of this study was to evaluate longitudinal relaxation R-1, transverse relaxation R-2, and proton density in the peritumoral edema in a group of patients with malignant glioma before surgery to assess whether relaxometry can detect changes not visible on conventional images. Methods In a prospective study, 24 patients with suspected malignant glioma were examined before surgery. A standard MRI protocol was used with the addition of a quantitative MR method (MAGIC), which measured R-1, R-2, and proton density. The diagnosis of malignant glioma was confirmed after biopsy/surgery. In 19 patients synthetic MR images were then created from the MAGIC scan, and ROIs were placed in the peritumoral edema to obtain the quantitative values. Dynamic susceptibility contrast perfusion was used to obtain cerebral blood volume (rCBV) data of the peritumoral edema. Voxel-based statistical analysis was performed using a mixed linear model. Results R-1, R-2, and rCBV decrease with increasing distance from the contrast-enhancing part of the tumor. There is a significant increase in R1 gradient after contrast agent injection (P<.0001). There is a heterogeneous pattern of relaxation values in the peritumoral edema adjacent to the contrast-enhancing part of the tumor. Conclusion Quantitative analysis with relaxometry of peritumoral edema in malignant gliomas detects tissue changes not visualized on conventional MR images. The finding of decreasing R-1 and R-2 means shorter relaxation times closer to the tumor, which could reflect tumor invasion into the peritumoral edema. However, these findings need to be validated in the future.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 33
Typ av publikation
tidskriftsartikel (19)
konferensbidrag (10)
doktorsavhandling (3)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (22)
övrigt vetenskapligt/konstnärligt (11)
Författare/redaktör
Blystad, Ida, 1972- (11)
Lundberg, Peter (10)
Tisell, Anders, 1981 ... (7)
Tisell, Anders (7)
Lundberg, Peter, 195 ... (6)
Larsson, Elna-Marie (5)
visa fler...
Warntjes, Marcel Jan ... (5)
Smedby, Örjan (4)
Landtblom, Anne-Mari ... (4)
Eklund, Anders, 1981 ... (4)
Engström, Maria (3)
Ernerudh, Jan (3)
Dahle, Charlotte (3)
Blennow, Kaj, 1958 (2)
Fällmar, David (2)
Abramian, David, 199 ... (2)
Eklund, Anders, Asso ... (2)
Özarslan, Evren, 197 ... (2)
Björkman-Burtscher, ... (2)
Smedby, Örjan, Profe ... (2)
Olsson, Bob, 1969 (2)
Sundström, Karin (2)
Nilsson, Margareta (2)
Smedby, Örjan, 1956- (1)
West, Janne, 1982- (1)
Behjat, Hamid (1)
Özarslan, Evren, Sen ... (1)
Andersson, Jesper, A ... (1)
Eklund, Anders (1)
Wikström, Johan (1)
Adolfsson, Emelie (1)
Dahlqvist Leinhard, ... (1)
Akbar, Muhammad Usma ... (1)
Larsson, Måns (1)
Henriksson, Roger (1)
Gimm, Oliver, 1967- (1)
Wikström, Johan, Pro ... (1)
Landtblom, A. -M (1)
Samuelsson, Kersti (1)
Håkansson, I (1)
Malmström, Annika (1)
Levi, Richard (1)
Levi, Richard, 1958- (1)
Landtblom, Anne-Mari ... (1)
Engström, Maria, 195 ... (1)
Birberg Thornberg, U ... (1)
Milos, Peter (1)
Bendrik, Christina, ... (1)
Milovanovic, Micha, ... (1)
Herberthson, Magnus, ... (1)
visa färre...
Lärosäte
Linköpings universitet (31)
Uppsala universitet (7)
Göteborgs universitet (3)
Kungliga Tekniska Högskolan (3)
Språk
Engelska (30)
Svenska (3)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (22)
Teknik (8)
Naturvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy