SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bobrowski N.) "

Sökning: WFRF:(Bobrowski N.)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Arellano, Santiago, 1981, et al. (författare)
  • Synoptic analysis of a decade of daily measurements of SO2 emission in the troposphere from volcanoes of the global ground-based Network for Observation of Volcanic and Atmospheric Change
  • 2021
  • Ingår i: Earth System Science Data. - : Copernicus GmbH. - 1866-3516 .- 1866-3508. ; 13:3, s. 1167-1188
  • Tidskriftsartikel (refereegranskat)abstract
    • Volcanic plumes are common and far-reaching manifestations of volcanic activity during and between eruptions. Observations of the rate of emission and composition of volcanic plumes are essential to recognize and, in some cases, predict the state of volcanic activity. Measurements of the size and location of the plumes are important to assess the impact of the emission from sporadic or localized events to persistent or widespread processes of climatic and environmental importance. These observations provide information on volatile budgets on Earth, chemical evolution of magmas, and atmospheric circulation and dynamics. Space-based observations during the last decades have given us a global view of Earth's volcanic emission, particularly of sulfur dioxide (SO2). Although none of the satellite missions were intended to be used for measurement of volcanic gas emission, specially adapted algorithms have produced time-averaged global emission budgets. These have confirmed that tropospheric plumes, produced from persistent degassing of weak sources, dominate the total emission of volcanic SO2. Although space-based observations have provided this global insight into some aspects of Earth's volcanism, it still has important limitations. The magnitude and short-term variability of lower-atmosphere emissions, historically less accessible from space, remain largely uncertain. Operational monitoring of volcanic plumes, at scales relevant for adequate surveillance, has been facilitated through the use of ground-based scanning differential optical absorption spectrometer (ScanDOAS) instruments since the beginning of this century, largely due to the coordinated effort of the Network for Observation of Volcanic and Atmospheric Change (NOVAC). In this study, we present a compilation of results of homogenized post-analysis of measurements of SO2 flux and plume parameters obtained during the period March 2005 to January 2017 of 32 volcanoes in NOVAC. This inventory opens a window into the short-term emission patterns of a diverse set of volcanoes in terms of magma composition, geographical location, magnitude of emission, and style of eruptive activity. We find that passive volcanic degassing is by no means a stationary process in time and that large sub-daily variability is observed in the flux of volcanic gases, which has implications for emission budgets produced using short-term, sporadic observations. The use of a standard evaluation method allows for intercomparison between different volcanoes and between ground- and space-based measurements of the same volcanoes. The emission of several weakly degassing volcanoes, undetected by satellites, is presented for the first time. We also compare our results with those reported in the literature, providing ranges of variability in emission not accessible in the past. The open-access data repository introduced in this article will enable further exploitation of this unique dataset, with a focus on volcanological research, risk assessment, satellite-sensor validation, and improved quantification of the prevalent tropospheric component of global volcanic emission. Datasets for each volcano are made available at https://novac.chalmers.se (last access: 1 October 2020) under the CC-BY 4 license or through the DOI (digital object identifier) links provided in Table 1.
  •  
2.
  • Bobrowski, N., et al. (författare)
  • Gas emission measurements of the active lava lake of Nyiragongo, DR Congo
  • 2011
  • Ingår i: Geophysical Research Abstracts, Vol. 13, EGU2011-10804, EGU General Assembly 2011, Vienna, Austria.
  • Konferensbidrag (refereegranskat)abstract
    • In June 2007 and July 2010 spectroscopic measurements and chemical in-situ studies were carried out at Nyiragongovolcano located 15 km north of the city Goma, North Kivu region (DRC), both at the crater rim and within the crater itself, next to the lava lake. Nyiragongo volcano belongs to the Virunga volcanic chain and it is associated with the Western branch of the Great Rift Valley. The volcanism at Nyiragongo is caused by the rifting of the Earth’s crust where two parts of the African plates are breaking apart. Niyragongo crater contains the biggest lava lake on Earth and it is considered one of the most active volcanoes in the world.The ground-based remote sensing technique MAX-DOAS (Multi-Axis Differential Optical Absorption Spectroscopy)using scattered sunlight has been applied during both field trips at the crater rim of the volcano tomeasure sulphur dioxide, halogen oxides and nitrogen oxide. Additionally filter pack and spectroscopic in-situ carbon dioxide measurements were carried out, as well as SO2 flux measurements by a scanning DOAS instrumentfrom the NOVAC project at the flank of the volcano.Nyiragongo is the first rift volcano where halogen oxides have been observed in the plume.Observations indicate that the gas composition of Nyiragongo might change with a changing lava lake level inshort and long-term time scales. Before and during an overflow of the lava lake the molar ratios of BrO/SO2 weredecreasing in 2007 and 2010 from about 3.10-5 to about 0 (below the detection limit). Such a decreasing trendwas also observed before and during the eruption of Mt. Etna 2006 and 2008.In a larger timescale between 2007 and 2010 the molar ratios of S/Cl and CO2/SO2 generally decreased from 6.7 -16.5 to 0.7 – 2.1, from 5 -10 to 1 - 5, respectively. The lower S/Cl and CO2/SO2 could lead to the conclusion thatthe magma reservoir below Niyragongo has had no new input from a deeper source.The chemical composition as well as its temporal variability within the volcanic plume from the lava lake will be discussed, as well as its implication on the understanding of the dynamics of the plumbing system of this volcano.
  •  
3.
  • Bobrowski, N., et al. (författare)
  • Gas emission strength and evolution of the molar ratio of BrO/SO2 in the plume of Nyiragongo in comparison to Etna
  • 2015
  • Ingår i: Journal of Geophysical Research. - : American Geophysical Union (AGU). - 0148-0227 .- 2156-2202 .- 2169-897X. ; 120:1, s. 277-291
  • Tidskriftsartikel (refereegranskat)abstract
    • Airborne and ground-based differential optical absorption spectroscopy observations have been carried out at the volcano Nyiragongo (Democratic Republic of Congo) to measure SO2 and bromine monoxide (BrO) in the plume in March 2004 and June 2007, respectively. Additionally filter pack and multicomponent gas analyzer system (Multi-GAS) measurements were carried out in June 2007. Our measurements provide valuable information on the chemical composition of the volcanic plume emitted from the lava lake of Nyiragongo. The main interest of this study has been to investigate for the first time the bromine emission flux of Nyiragongo (a rift volcano) and the BrO formation in its volcanic plume. Measurement data and results from a numerical model of the evolution of BrO in Nyiragongo volcanic plume are compared with earlier studies of the volcanic plume of Etna (Italy). Even though the bromine flux from Nyiragongo (2.6t/d) is slightly greater than that from Etna (1.9t/d), the BrO/SO2 ratio (maximum 7x10(-5)) is smaller than in the plume of Etna (maximum 2.1x10(-4)). A one-dimensional photochemical model to investigate halogen chemistry in the volcanic plumes of Etna and Nyiragongo was initialized using data from Multi-GAS and filter pack measurements. Model runs showed that the differences in the composition of volcanic volatiles led to a smaller fraction of total bromine being present as BrO in the Nyiragongo plume and to a smaller BrO/SO2 ratio.
  •  
4.
  • Bobrowski, N., et al. (författare)
  • Plume composition and volatile flux of Nyamulagira volcano, Democratic Republic of Congo, during birth and evolution of the lava lake, 2014–2015
  • 2017
  • Ingår i: Bulletin of Volcanology. - : Springer Science and Business Media LLC. - 0258-8900 .- 1432-0819. ; 79:12, s. 90-
  • Tidskriftsartikel (refereegranskat)abstract
    • Very little is known about the volatile element makeup of the gaseous emissions of Nyamulagira volcano. This paper tries to fill this gap by reporting the first gas composition measurements of Nyamulagira’s volcanic plume since the onset of its lava lake activity at the end of 2014. Two field surveys were carried out on 1 November 2014, and 13–15 October 2015. We applied a broad toolbox of volcanic gas composition measurement techniques in order to geochemically characterize Nyamulagira’s plume. Nyamulagira is a significant emitter of SO2, and our measurements confirm this, as we recorded SO2 emissions of up to ~ 14 kt/d during the studied period. In contrast to neighbouring Nyiragongo volcano, however, Nyamulagira exhibits relatively low CO2/SO2 molar ratios ( 92% of total gas emissions). Strong variations in the volatile composition, in particular for the CO2/SO2 ratio, were measured between 2014 and 2015, which appear to reflect the simultaneous variations in volcanic activity. We also determined the molar ratios for Cl/S, F/S and Br/S in the plume gas, finding values of 0.13 and 0.17, 0.06 and 0.11, and 2.3·10?4 and 1·10?4, in 2014 and 2015, respectively. A total gas emission flux of 48 kt/d was estimated for 2014. The I/S ratio in 2015 was found to be 3.6·10?6. In addition, we were able to distinguish between hydrogen halides and non-hydrogen halides in the volcanic plume. Considerable amounts of bromine (18–35% of total bromine) and iodine (8–18% of total iodine) were found in compounds other than hydrogen halides. However, only a negligible fraction of chlorine was found as compounds other than hydrogen chloride.
  •  
5.
  • Galle, Bo, 1952, et al. (författare)
  • A multi-purpose, multi-rotor drone system for long-range and high-altitude volcanic gas plume measurements
  • 2021
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 14:6, s. 4255-4277
  • Tidskriftsartikel (refereegranskat)abstract
    • A multi-rotor drone has been adapted for studies of volcanic gas plumes. This adaptation includes improved capacity for high-altitude and long-range, real-time SO2 concentration monitoring, long-range manual control, remotely activated bag sampling and plume speed measurement capability. The drone is capable of acting as a stable platform for various instrument configurations, including multi-component gas analysis system (MultiGAS) instruments for in situ measurements of SO2, H2S, and CO2 concentrations in the gas plume and portable differential optical absorption spectrometer (MobileDOAS) instruments for spectroscopic measurement of total SO2 emission rate, remotely controlled gas sampling in bags and sampling with gas denuders for posterior analysis on the ground of isotopic composition and halogens. The platform we present was field-tested during three campaigns in Papua New Guinea: in 2016 at Tavurvur, Bagana and Ulawun volcanoes, in 2018 at Tavurvur and Langila volcanoes and in 2019 at Tavurvur and Manam volcanoes, as well as in Mt. Etna in Italy in 2017. This paper describes the drone platform and the multiple payloads, the various measurement strategies and an algorithm to correct for different response times of MultiGAS sensors. Specifically, we emphasize the need for an adaptive flight path, together with live data transmission of a plume tracer (such as SO2 concentration) to the ground station, to ensure optimal plume interception when operating beyond the visual line of sight. We present results from a comprehensive plume characterization obtained during a field deployment at Manam volcano in May 2019. The Papua New Guinea region, and particularly Manam volcano, has not been extensively studied for volcanic gases due to its remote location, inaccessible summit region and high level of volcanic activity. We demonstrate that the combination of a multi-rotor drone with modular payloads is a versatile solution to obtain the flux and composition of volcanic plumes, even for the case of a highly active volcano with a high-altitude plume such as Manam. Drone-based measurements offer a valuable solution to volcano research and monitoring applications and provide an alternativespan idCombining double low line"page4256"/> and complementary method to ground-based and direct sampling of volcanic gases.
  •  
6.
  • Liu, E. J., et al. (författare)
  • Aerial strategies advance volcanic gas measurements at inaccessible, strongly degassing volcanoes
  • 2020
  • Ingår i: Science advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 6:44
  • Tidskriftsartikel (refereegranskat)abstract
    • Volcanic emissions are a critical pathway in Earth's carbon cycle. Here, we show that aerial measurements of volcanic gases using unoccupied aerial systems (UAS) transform our ability to measure and monitor plumes remotely and to constrain global volatile fluxes from volcanoes. Combining multi-scale measurements from ground-based remote sensing, long-range aerial sampling, and satellites, we present comprehensive gas fluxes-3760 ± [600, 310] tons day-1 CO2 and 5150 ± [730, 340] tons day-1 SO2-for a strong yet previously uncharacterized volcanic emitter: Manam, Papua New Guinea. The CO2/ST ratio of 1.07 ± 0.06 suggests a modest slab sediment contribution to the sub-arc mantle. We find that aerial strategies reduce uncertainties associated with ground-based remote sensing of SO2 flux and enable near-real-time measurements of plume chemistry and carbon isotope composition. Our data emphasize the need to account for time averaging of temporal variability in volcanic gas emissions in global flux estimates.
  •  
7.
  • Lübcke, Peter, et al. (författare)
  • Retrieval of absolute SO2 column amounts from scattered-light spectra: implications for the evaluation of data from automated DOAS networks
  • 2016
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 9:12, s. 5677-5698
  • Tidskriftsartikel (refereegranskat)abstract
    • Scanning spectrometer networks using scattered solar radiation in the ultraviolet spectral region have become an increasingly important tool for monitoring volcanic sulfur dioxide (SO2) emissions. Often measured spectra are evaluated using the differential optical absorption spectroscopy (DOAS) technique. In order to obtain absolute column densities (CDs), the DOAS evaluation requires a Fraunhofer reference spectrum (FRS) that is free of absorption structures of the trace gas of interest. For measurements at volcanoes such a FRS can be readily obtained if the scan (i.e. series of measurements at different elevation angles) includes viewing directions where the plume is not seen. In this case, it is possible to use these viewing directions (e.g. zenith) as FRS. Possible contaminations of the FRS by the plume can then be corrected by calculating and subtracting an SO2 offset (e.g. the lowest SO2 CD) from all viewing directions of the respective scan. This procedure is followed in the standard evaluations of data from the Network for Observation of Volcanic and Atmospheric Change (NOVAC). While this procedure is very efficient in removing Fraunhofer structures and instrumental effects it has the disadvantage that one can never be sure that there is no SO2 from the plume in the FRS. Therefore, using a modelled FRS (based on a high-resolution solar atlas) has a great advantage. We followed this approach and investigated an SO2 retrieval algorithm using a modelled FRS. In this paper, we present results from two volcanoes that are monitored by NOVAC stations and which frequently emit large volcanic plumes: Nevado del Ruiz (Colombia) recorded between January 2010 and June 2012 and from Tungurahua (Ecuador) recorded between January 2009 and December 2011. Instrumental effects were identified with help of a principal component analysis (PCA) of the residual structures of the DOAS evaluation. The SO2 retrieval performed extraordinarily well with an SO2 DOAS retrieval error of 1-2 x 10(16) [molecules cm(-2)]. Compared to a standard evaluation, we found systematic differences of the differential slant column density (dSCD) of only up to approximate to 15% when looking at the variation of the SO2 within one scan. The major advantage of our new retrieval is that it yields absolute SO2 CDs and that it does not require complicated instrumental calibration in the field (e.g. by employing calibration cells or broadband light sources), since the method exploits the information available in the measurements. We compared our method to an evaluation that is similar to the NOVAC approach, where a spectrum that is recorded directly before the scan is used as an FRS and an SO2 CD offset is subtracted from all retrieved dSCD in the scan to correct for possible SO2 contamination of the FRS. The investigation showed that 21.4% of the scans (containing significant amounts of SO2) at Nevado del Ruiz and 7% of the scans at Tungurahua showed much larger SO2 CDs when evaluated using modelled FRS (more than a factor of 2). For standard evaluations the overall distribution of the SO2 CDs in a scan can in some cases indicate whether the plume affects all viewing directions and thus these scans need to be discarded for NOVAC emission rate evaluation. However, there are other cases where this is not possible and thus the reported SO2 emission rates would be underestimated. The new method can be used to identify these cases and thus it can considerably improve SO2 emission budgets.
  •  
8.
  • Platt, U., et al. (författare)
  • Spectroscopic Observation of Volcanic Emissions – Status and Future Trends
  • 2011
  • Ingår i: 11th IAVCEI-CCVG Gas Workshop, September 1 - 10, 2011, Kamchatka, Russia.
  • Konferensbidrag (refereegranskat)abstract
    • In recent years spectroscopic quantification of gas emissions from volcanoes made considerable progress. In particular spectroscopic approaches observing volcanic gases in the ultra-violet spectral range evolved from an art to mature techniques, which are routinely applicable in automated installations.Using spatio-temporal correlation techniques also absolute amouts of trace gas fluxes can be determined.This is e.g. demonstrated by the NOVAC network.In addition systems operating in the infra-red (IR) spectral range have also made enormous progress. Here two varieties are in use: Absorption spectroscopy using direct sunlight and Emission spectroscopy using thermal emission from the trace constituents to be studied. Although neither of the two IR varieties is yet applicable in automated routine observation these techniques have considerable potential as well. For instance thermal emission spcetroscopy would also allow observations at night.Moreover, novel techniques for remote sensing of volcanic emissions, the SO2-Camera and imaging-DOAS (I-DOAS), where the I-DOAS technique trace gas distributions using the DOAS principle, came into widespread use recently. In particular the SO2 camera allows real time observation of the 2-dimensional evolution of volcanic plumes.Here we present a brief technical description and a critical assessment of the techniques listed above and discuss the relative merits of the different approaches for quantifying volcanic emissions by giving examples of successful applications in the field. Also expected future developments and requirements for volcanic surveillance are discussed.
  •  
9.
  • Vita, F., et al. (författare)
  • Continuous SO2 flux measurements for Vulcano Island, Italy
  • 2012
  • Ingår i: Annals of Geophysics. - : Instituto Nazionale di Geofisica e Vulcanologia, INGV. - 1593-5213 .- 2037-416X. ; 55:2, s. 301-308
  • Tidskriftsartikel (refereegranskat)abstract
    • The La Fossa cone of Vulcano Island (Aeolian Archipelago, Italy) is a closed conduit volcano. Today, Vulcano Island is characterized by sulfataric activity, with a large fumarolic field that is mainly located in the summit area. A scanning differential optical absorption spectroscopy instrument designed by the Optical Sensing Group of Chalmers University of Technology in Goteborg, Sweden, was installed in the framework of the European project "Network for Observation of Volcanic and Atmospheric Change", in March 2008. This study presents the first dataset of SO2 plume fluxes recorded for a closed volcanic system. Between 2008 and 2010, the SO2 fluxes recorded showed average values of 12 t.d(-1) during the normal sulfataric activity of Vulcano Island, with one exceptional event of strong degassing that occurred between September and December, 2009, when the SO2 emissions reached up to 100 t.d(-1).
  •  
10.
  • Warnach, S., et al. (författare)
  • Variation of the BrO/SO2 molar ratio in the plume of Tungurahua volcano between 2007 and 2017 and its relationship to volcanic activity
  • 2019
  • Ingår i: Frontiers in Earth Science. - : Frontiers Media SA. - 2296-6463. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent long-term observations of the bromine monoxide (BrO) to sulphur dioxide (SO2) molar ratio in volcanic plumes have suggested a link between changes in the BrO/SO2 ratio and the volcanic activity. Nevertheless, understanding of the mechanisms determining this link is still limited due to the lack of studies on volcanic bromine release from the melt into the atmosphere. We present the results of 10 years (2007–2017) of observations of the BrO/SO2 molar ratio in the volcanic plume of Tungurahua volcano, Ecuador. Following the nearly continuous eruptive activity from 1999 to 2008, Tungurahua showed alternating phases of eruptive activity separated by periods of quiescence between late 2008 and March 2016, after which degassing intensity decreased below detection. By comparing the BrO/SO2 molar ratios collected from 13 eruptive phases to volcanic activity, this study aims to broaden the global observational database investigating their link. For this purpose, we combine three different methods to retrieve the BrO/SO2 molar ratio to analyse variations over different timescales. We identify a cyclic pattern in BrO/SO2 molar ratios for 11 of the 13 eruptive phases. The phases are initialised by low BrO/SO2 molar ratios between 2 and 6 × 10−5 coinciding with vulcanian-type activity followed by a strong increase to ratios ranging between 4 and 17 × 10−5 when eruptive dynamism shifts to strombolian. For five phases, we additionally observe a progressive decrease to the initial values of 2 to 5 × 10−5 toward the end of the phase. This clear pattern indicates a connection between the BrO/SO2 molar ratio and eruptive dynamics. Based on our new data, we propose a conceptual model of the volcanic processes taking place at Tungurahua during the eruptive phases. Our data furthermore indicate that maximal BrO/SO2 molar ratios observed during each phase could be related to the input of volatile-rich magma into the active part of the volcanic system of Tungurahua. This study shows that long-term BrO/SO2 molar ratios can be used as a proxy for the volatile status as well as temporal evolution of the volcanic system. © 2019 Warnach, Bobrowski, Hidalgo, Arellano, Sihler, Dinger, Lübcke, Battaglia, Steele, Galle, Platt and Wagner.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy